mirror of https://github.com/ArduPilot/ardupilot
436 lines
14 KiB
C++
436 lines
14 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "AP_Beacon.h"
|
|
|
|
#if AP_BEACON_ENABLED
|
|
|
|
#include "AP_Beacon_Backend.h"
|
|
#include "AP_Beacon_Pozyx.h"
|
|
#include "AP_Beacon_Marvelmind.h"
|
|
#include "AP_Beacon_Nooploop.h"
|
|
#include "AP_Beacon_SITL.h"
|
|
|
|
#include <AP_Common/Location.h>
|
|
#include <AP_Logger/AP_Logger.h>
|
|
|
|
extern const AP_HAL::HAL &hal;
|
|
|
|
// table of user settable parameters
|
|
const AP_Param::GroupInfo AP_Beacon::var_info[] = {
|
|
|
|
// @Param: _TYPE
|
|
// @DisplayName: Beacon based position estimation device type
|
|
// @Description: What type of beacon based position estimation device is connected
|
|
// @Values: 0:None,1:Pozyx,2:Marvelmind,3:Nooploop,10:SITL
|
|
// @User: Advanced
|
|
AP_GROUPINFO_FLAGS("_TYPE", 0, AP_Beacon, _type, 0, AP_PARAM_FLAG_ENABLE),
|
|
|
|
// @Param: _LATITUDE
|
|
// @DisplayName: Beacon origin's latitude
|
|
// @Description: Beacon origin's latitude
|
|
// @Units: deg
|
|
// @Increment: 0.000001
|
|
// @Range: -90 90
|
|
// @User: Advanced
|
|
AP_GROUPINFO("_LATITUDE", 1, AP_Beacon, origin_lat, 0),
|
|
|
|
// @Param: _LONGITUDE
|
|
// @DisplayName: Beacon origin's longitude
|
|
// @Description: Beacon origin's longitude
|
|
// @Units: deg
|
|
// @Increment: 0.000001
|
|
// @Range: -180 180
|
|
// @User: Advanced
|
|
AP_GROUPINFO("_LONGITUDE", 2, AP_Beacon, origin_lon, 0),
|
|
|
|
// @Param: _ALT
|
|
// @DisplayName: Beacon origin's altitude above sealevel in meters
|
|
// @Description: Beacon origin's altitude above sealevel in meters
|
|
// @Units: m
|
|
// @Increment: 1
|
|
// @Range: 0 10000
|
|
// @User: Advanced
|
|
AP_GROUPINFO("_ALT", 3, AP_Beacon, origin_alt, 0),
|
|
|
|
// @Param: _ORIENT_YAW
|
|
// @DisplayName: Beacon systems rotation from north in degrees
|
|
// @Description: Beacon systems rotation from north in degrees
|
|
// @Units: deg
|
|
// @Increment: 1
|
|
// @Range: -180 +180
|
|
// @User: Advanced
|
|
AP_GROUPINFO("_ORIENT_YAW", 4, AP_Beacon, orient_yaw, 0),
|
|
|
|
AP_GROUPEND
|
|
};
|
|
|
|
AP_Beacon::AP_Beacon()
|
|
{
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
if (_singleton != nullptr) {
|
|
AP_HAL::panic("Fence must be singleton");
|
|
}
|
|
#endif
|
|
_singleton = this;
|
|
AP_Param::setup_object_defaults(this, var_info);
|
|
}
|
|
|
|
// initialise the AP_Beacon class
|
|
void AP_Beacon::init(void)
|
|
{
|
|
if (_driver != nullptr) {
|
|
// init called a 2nd time?
|
|
return;
|
|
}
|
|
|
|
// create backend
|
|
if (_type == AP_BeaconType_Pozyx) {
|
|
_driver = new AP_Beacon_Pozyx(*this);
|
|
} else if (_type == AP_BeaconType_Marvelmind) {
|
|
_driver = new AP_Beacon_Marvelmind(*this);
|
|
} else if (_type == AP_BeaconType_Nooploop) {
|
|
_driver = new AP_Beacon_Nooploop(*this);
|
|
}
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
if (_type == AP_BeaconType_SITL) {
|
|
_driver = new AP_Beacon_SITL(*this);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// return true if beacon feature is enabled
|
|
bool AP_Beacon::enabled(void) const
|
|
{
|
|
return (_type != AP_BeaconType_None);
|
|
}
|
|
|
|
// return true if sensor is basically healthy (we are receiving data)
|
|
bool AP_Beacon::healthy(void) const
|
|
{
|
|
if (!device_ready()) {
|
|
return false;
|
|
}
|
|
return _driver->healthy();
|
|
}
|
|
|
|
// update state. This should be called often from the main loop
|
|
void AP_Beacon::update(void)
|
|
{
|
|
if (!device_ready()) {
|
|
return;
|
|
}
|
|
_driver->update();
|
|
|
|
// update boundary for fence
|
|
update_boundary_points();
|
|
}
|
|
|
|
// return origin of position estimate system
|
|
bool AP_Beacon::get_origin(Location &origin_loc) const
|
|
{
|
|
if (!device_ready()) {
|
|
return false;
|
|
}
|
|
|
|
// check for un-initialised origin
|
|
if (is_zero(origin_lat) && is_zero(origin_lon) && is_zero(origin_alt)) {
|
|
return false;
|
|
}
|
|
|
|
// return origin
|
|
origin_loc = {};
|
|
origin_loc.lat = origin_lat * 1.0e7f;
|
|
origin_loc.lng = origin_lon * 1.0e7f;
|
|
origin_loc.alt = origin_alt * 100;
|
|
|
|
return true;
|
|
}
|
|
|
|
// return position in NED from position estimate system's origin in meters
|
|
bool AP_Beacon::get_vehicle_position_ned(Vector3f &position, float& accuracy_estimate) const
|
|
{
|
|
if (!device_ready()) {
|
|
return false;
|
|
}
|
|
|
|
// check for timeout
|
|
if (AP_HAL::millis() - veh_pos_update_ms > AP_BEACON_TIMEOUT_MS) {
|
|
return false;
|
|
}
|
|
|
|
// return position
|
|
position = veh_pos_ned;
|
|
accuracy_estimate = veh_pos_accuracy;
|
|
return true;
|
|
}
|
|
|
|
// return the number of beacons
|
|
uint8_t AP_Beacon::count() const
|
|
{
|
|
if (!device_ready()) {
|
|
return 0;
|
|
}
|
|
return num_beacons;
|
|
}
|
|
|
|
// return all beacon data
|
|
bool AP_Beacon::get_beacon_data(uint8_t beacon_instance, struct BeaconState& state) const
|
|
{
|
|
if (!device_ready() || beacon_instance >= num_beacons) {
|
|
return false;
|
|
}
|
|
state = beacon_state[beacon_instance];
|
|
return true;
|
|
}
|
|
|
|
// return individual beacon's id
|
|
uint8_t AP_Beacon::beacon_id(uint8_t beacon_instance) const
|
|
{
|
|
if (beacon_instance >= num_beacons) {
|
|
return 0;
|
|
}
|
|
return beacon_state[beacon_instance].id;
|
|
}
|
|
|
|
// return beacon health
|
|
bool AP_Beacon::beacon_healthy(uint8_t beacon_instance) const
|
|
{
|
|
if (beacon_instance >= num_beacons) {
|
|
return false;
|
|
}
|
|
return beacon_state[beacon_instance].healthy;
|
|
}
|
|
|
|
// return distance to beacon in meters
|
|
float AP_Beacon::beacon_distance(uint8_t beacon_instance) const
|
|
{
|
|
if ( beacon_instance >= num_beacons || !beacon_state[beacon_instance].healthy) {
|
|
return 0.0f;
|
|
}
|
|
return beacon_state[beacon_instance].distance;
|
|
}
|
|
|
|
// return beacon position in meters
|
|
Vector3f AP_Beacon::beacon_position(uint8_t beacon_instance) const
|
|
{
|
|
if (!device_ready() || beacon_instance >= num_beacons) {
|
|
Vector3f temp = {};
|
|
return temp;
|
|
}
|
|
return beacon_state[beacon_instance].position;
|
|
}
|
|
|
|
// return last update time from beacon in milliseconds
|
|
uint32_t AP_Beacon::beacon_last_update_ms(uint8_t beacon_instance) const
|
|
{
|
|
if (_type == AP_BeaconType_None || beacon_instance >= num_beacons) {
|
|
return 0;
|
|
}
|
|
return beacon_state[beacon_instance].distance_update_ms;
|
|
}
|
|
|
|
// create fence boundary points
|
|
void AP_Beacon::update_boundary_points()
|
|
{
|
|
// we need three beacons at least to create boundary fence.
|
|
// update boundary fence if number of beacons changes
|
|
if (!device_ready() || num_beacons < AP_BEACON_MINIMUM_FENCE_BEACONS || boundary_num_beacons == num_beacons) {
|
|
return;
|
|
}
|
|
|
|
// record number of beacons so we do not repeat calculations
|
|
boundary_num_beacons = num_beacons;
|
|
|
|
// accumulate beacon points
|
|
Vector2f beacon_points[AP_BEACON_MAX_BEACONS];
|
|
for (uint8_t index = 0; index < num_beacons; index++) {
|
|
const Vector3f& point_3d = beacon_position(index);
|
|
beacon_points[index].x = point_3d.x;
|
|
beacon_points[index].y = point_3d.y;
|
|
}
|
|
|
|
// create polygon around boundary points using the following algorithm
|
|
// set the "current point" as the first boundary point
|
|
// loop through all the boundary points looking for the point which creates a vector (from the current point to this new point) with the lowest angle
|
|
// check if point is already in boundary
|
|
// - no: add to boundary, move current point to this new point and repeat the above
|
|
// - yes: we've completed the bounding box, delete any boundary points found earlier than the duplicate
|
|
|
|
Vector2f boundary_points[AP_BEACON_MAX_BEACONS+1]; // array of boundary points
|
|
uint8_t curr_boundary_idx = 0; // index into boundary_sorted index. always points to the highest filled in element of the array
|
|
uint8_t curr_beacon_idx = 0; // index into beacon_point array. point indexed is same point as curr_boundary_idx's
|
|
|
|
// initialise first point of boundary_sorted with first beacon's position (this point may be removed later if it is found to not be on the outer boundary)
|
|
boundary_points[curr_boundary_idx] = beacon_points[curr_beacon_idx];
|
|
|
|
bool boundary_success = false; // true once the boundary has been successfully found
|
|
bool boundary_failure = false; // true if we fail to build the boundary
|
|
float start_angle = 0.0f; // starting angle used when searching for next boundary point, on each iteration this climbs but never climbs past PI * 2
|
|
while (!boundary_success && !boundary_failure) {
|
|
// look for next outer point
|
|
uint8_t next_idx;
|
|
float next_angle;
|
|
if (get_next_boundary_point(beacon_points, num_beacons, curr_beacon_idx, start_angle, next_idx, next_angle)) {
|
|
// add boundary point to boundary_sorted array
|
|
curr_boundary_idx++;
|
|
boundary_points[curr_boundary_idx] = beacon_points[next_idx];
|
|
curr_beacon_idx = next_idx;
|
|
start_angle = next_angle;
|
|
|
|
// check if we have a complete boundary by looking for duplicate points within the boundary_sorted
|
|
uint8_t dup_idx = 0;
|
|
bool dup_found = false;
|
|
while (dup_idx < curr_boundary_idx && !dup_found) {
|
|
dup_found = (boundary_points[dup_idx] == boundary_points[curr_boundary_idx]);
|
|
if (!dup_found) {
|
|
dup_idx++;
|
|
}
|
|
}
|
|
// if duplicate is found, remove all boundary points before the duplicate because they are inner points
|
|
if (dup_found) {
|
|
// note that the closing/duplicate point is not
|
|
// included in the boundary points.
|
|
const uint8_t num_pts = curr_boundary_idx - dup_idx;
|
|
if (num_pts >= AP_BEACON_MINIMUM_FENCE_BEACONS) { // we consider three points to be a polygon
|
|
// success, copy boundary points to boundary array and convert meters to cm
|
|
for (uint8_t j = 0; j < num_pts; j++) {
|
|
boundary[j] = boundary_points[j+dup_idx] * 100.0f;
|
|
}
|
|
boundary_num_points = num_pts;
|
|
boundary_success = true;
|
|
} else {
|
|
// boundary has too few points
|
|
boundary_failure = true;
|
|
}
|
|
}
|
|
} else {
|
|
// failed to create boundary - give up!
|
|
boundary_failure = true;
|
|
}
|
|
}
|
|
|
|
// clear boundary on failure
|
|
if (boundary_failure) {
|
|
boundary_num_points = 0;
|
|
}
|
|
}
|
|
|
|
// find next boundary point from an array of boundary points given the current index into that array
|
|
// returns true if a next point can be found
|
|
// current_index should be an index into the boundary_pts array
|
|
// start_angle is an angle (in radians), the search will sweep clockwise from this angle
|
|
// the index of the next point is returned in the next_index argument
|
|
// the angle to the next point is returned in the next_angle argument
|
|
bool AP_Beacon::get_next_boundary_point(const Vector2f* boundary_pts, uint8_t num_points, uint8_t current_index, float start_angle, uint8_t& next_index, float& next_angle)
|
|
{
|
|
// sanity check
|
|
if (boundary_pts == nullptr || current_index >= num_points) {
|
|
return false;
|
|
}
|
|
|
|
// get current point
|
|
Vector2f curr_point = boundary_pts[current_index];
|
|
|
|
// search through all points for next boundary point in a clockwise direction
|
|
float lowest_angle = M_PI_2;
|
|
float lowest_angle_relative = M_PI_2;
|
|
bool lowest_found = false;
|
|
uint8_t lowest_index = 0;
|
|
for (uint8_t i=0; i < num_points; i++) {
|
|
if (i != current_index) {
|
|
Vector2f vec = boundary_pts[i] - curr_point;
|
|
if (!vec.is_zero()) {
|
|
float angle = wrap_2PI(atan2f(vec.y, vec.x));
|
|
float angle_relative = wrap_2PI(angle - start_angle);
|
|
if ((angle_relative < lowest_angle_relative) || !lowest_found) {
|
|
lowest_angle = angle;
|
|
lowest_angle_relative = angle_relative;
|
|
lowest_index = i;
|
|
lowest_found = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// return results
|
|
if (lowest_found) {
|
|
next_index = lowest_index;
|
|
next_angle = lowest_angle;
|
|
}
|
|
return lowest_found;
|
|
}
|
|
|
|
// return fence boundary array
|
|
const Vector2f* AP_Beacon::get_boundary_points(uint16_t& num_points) const
|
|
{
|
|
if (!device_ready()) {
|
|
num_points = 0;
|
|
return nullptr;
|
|
}
|
|
|
|
num_points = boundary_num_points;
|
|
return boundary;
|
|
}
|
|
|
|
// check if the device is ready
|
|
bool AP_Beacon::device_ready(void) const
|
|
{
|
|
return ((_driver != nullptr) && (_type != AP_BeaconType_None));
|
|
}
|
|
|
|
#if HAL_LOGGING_ENABLED
|
|
// Write beacon sensor (position) data
|
|
void AP_Beacon::log()
|
|
{
|
|
if (!enabled()) {
|
|
return;
|
|
}
|
|
// position
|
|
Vector3f pos;
|
|
float accuracy = 0.0f;
|
|
get_vehicle_position_ned(pos, accuracy);
|
|
|
|
const struct log_Beacon pkt_beacon{
|
|
LOG_PACKET_HEADER_INIT(LOG_BEACON_MSG),
|
|
time_us : AP_HAL::micros64(),
|
|
health : (uint8_t)healthy(),
|
|
count : (uint8_t)count(),
|
|
dist0 : beacon_distance(0),
|
|
dist1 : beacon_distance(1),
|
|
dist2 : beacon_distance(2),
|
|
dist3 : beacon_distance(3),
|
|
posx : pos.x,
|
|
posy : pos.y,
|
|
posz : pos.z
|
|
};
|
|
AP::logger().WriteBlock(&pkt_beacon, sizeof(pkt_beacon));
|
|
}
|
|
#endif
|
|
|
|
// singleton instance
|
|
AP_Beacon *AP_Beacon::_singleton;
|
|
|
|
namespace AP {
|
|
|
|
AP_Beacon *beacon()
|
|
{
|
|
return AP_Beacon::get_singleton();
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|