ardupilot/ArduCopter/mode_rtl.cpp
2022-03-12 08:01:18 +09:00

591 lines
21 KiB
C++

#include "Copter.h"
#if MODE_RTL_ENABLED == ENABLED
/*
* Init and run calls for RTL flight mode
*
* There are two parts to RTL, the high level decision making which controls which state we are in
* and the lower implementation of the waypoint or landing controllers within those states
*/
// rtl_init - initialise rtl controller
bool ModeRTL::init(bool ignore_checks)
{
if (!ignore_checks) {
if (!AP::ahrs().home_is_set()) {
return false;
}
}
// initialise waypoint and spline controller
wp_nav->wp_and_spline_init(g.rtl_speed_cms);
_state = SubMode::STARTING;
_state_complete = true; // see run() method below
terrain_following_allowed = !copter.failsafe.terrain;
// reset flag indicating if pilot has applied roll or pitch inputs during landing
copter.ap.land_repo_active = false;
// this will be set true if prec land is later active
copter.ap.prec_land_active = false;
#if PRECISION_LANDING == ENABLED
// initialise precland state machine
copter.precland_statemachine.init();
#endif
return true;
}
// re-start RTL with terrain following disabled
void ModeRTL::restart_without_terrain()
{
AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::RESTARTED_RTL);
terrain_following_allowed = false;
_state = SubMode::STARTING;
_state_complete = true;
gcs().send_text(MAV_SEVERITY_CRITICAL,"Restarting RTL - Terrain data missing");
}
ModeRTL::RTLAltType ModeRTL::get_alt_type() const
{
// sanity check parameter
if (g.rtl_alt_type < 0 || g.rtl_alt_type > (int)RTLAltType::RTL_ALTTYPE_TERRAIN) {
return RTLAltType::RTL_ALTTYPE_RELATIVE;
}
return (RTLAltType)g.rtl_alt_type.get();
}
// rtl_run - runs the return-to-launch controller
// should be called at 100hz or more
void ModeRTL::run(bool disarm_on_land)
{
if (!motors->armed()) {
return;
}
// check if we need to move to next state
if (_state_complete) {
switch (_state) {
case SubMode::STARTING:
build_path();
climb_start();
break;
case SubMode::INITIAL_CLIMB:
return_start();
break;
case SubMode::RETURN_HOME:
loiterathome_start();
break;
case SubMode::LOITER_AT_HOME:
if (rtl_path.land || copter.failsafe.radio) {
land_start();
}else{
descent_start();
}
break;
case SubMode::FINAL_DESCENT:
// do nothing
break;
case SubMode::LAND:
// do nothing - rtl_land_run will take care of disarming motors
break;
}
}
// call the correct run function
switch (_state) {
case SubMode::STARTING:
// should not be reached:
_state = SubMode::INITIAL_CLIMB;
FALLTHROUGH;
case SubMode::INITIAL_CLIMB:
climb_return_run();
break;
case SubMode::RETURN_HOME:
climb_return_run();
break;
case SubMode::LOITER_AT_HOME:
loiterathome_run();
break;
case SubMode::FINAL_DESCENT:
descent_run();
break;
case SubMode::LAND:
land_run(disarm_on_land);
break;
}
}
// rtl_climb_start - initialise climb to RTL altitude
void ModeRTL::climb_start()
{
_state = SubMode::INITIAL_CLIMB;
_state_complete = false;
// set the destination
if (!wp_nav->set_wp_destination_loc(rtl_path.climb_target) || !wp_nav->set_wp_destination_next_loc(rtl_path.return_target)) {
// this should not happen because rtl_build_path will have checked terrain data was available
gcs().send_text(MAV_SEVERITY_CRITICAL,"RTL: unexpected error setting climb target");
AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::FAILED_TO_SET_DESTINATION);
copter.set_mode(Mode::Number::LAND, ModeReason::TERRAIN_FAILSAFE);
return;
}
// hold current yaw during initial climb
auto_yaw.set_mode(AUTO_YAW_HOLD);
}
// rtl_return_start - initialise return to home
void ModeRTL::return_start()
{
_state = SubMode::RETURN_HOME;
_state_complete = false;
if (!wp_nav->set_wp_destination_loc(rtl_path.return_target)) {
// failure must be caused by missing terrain data, restart RTL
restart_without_terrain();
}
// initialise yaw to point home (maybe)
auto_yaw.set_mode_to_default(true);
}
// rtl_climb_return_run - implements the initial climb, return home and descent portions of RTL which all rely on the wp controller
// called by rtl_run at 100hz or more
void ModeRTL::climb_return_run()
{
// if not armed set throttle to zero and exit immediately
if (is_disarmed_or_landed()) {
make_safe_ground_handling();
return;
}
// process pilot's yaw input
float target_yaw_rate = 0;
if (!copter.failsafe.radio && use_pilot_yaw()) {
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->norm_input_dz());
if (!is_zero(target_yaw_rate)) {
auto_yaw.set_mode(AUTO_YAW_HOLD);
}
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// run waypoint controller
copter.failsafe_terrain_set_status(wp_nav->update_wpnav());
// WP_Nav has set the vertical position control targets
// run the vertical position controller and set output throttle
pos_control->update_z_controller();
// call attitude controller
if (auto_yaw.mode() == AUTO_YAW_HOLD) {
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control->input_thrust_vector_rate_heading(wp_nav->get_thrust_vector(), target_yaw_rate);
}else{
// roll, pitch from waypoint controller, yaw heading from auto_heading()
attitude_control->input_thrust_vector_heading(wp_nav->get_thrust_vector(), auto_yaw.yaw());
}
// check if we've completed this stage of RTL
_state_complete = wp_nav->reached_wp_destination();
}
// loiterathome_start - initialise return to home
void ModeRTL::loiterathome_start()
{
_state = SubMode::LOITER_AT_HOME;
_state_complete = false;
_loiter_start_time = millis();
// yaw back to initial take-off heading yaw unless pilot has already overridden yaw
if (auto_yaw.default_mode(true) != AUTO_YAW_HOLD) {
auto_yaw.set_mode(AUTO_YAW_RESETTOARMEDYAW);
} else {
auto_yaw.set_mode(AUTO_YAW_HOLD);
}
}
// rtl_climb_return_descent_run - implements the initial climb, return home and descent portions of RTL which all rely on the wp controller
// called by rtl_run at 100hz or more
void ModeRTL::loiterathome_run()
{
// if not armed set throttle to zero and exit immediately
if (is_disarmed_or_landed()) {
make_safe_ground_handling();
return;
}
// process pilot's yaw input
float target_yaw_rate = 0;
if (!copter.failsafe.radio && use_pilot_yaw()) {
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->norm_input_dz());
if (!is_zero(target_yaw_rate)) {
auto_yaw.set_mode(AUTO_YAW_HOLD);
}
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// run waypoint controller
copter.failsafe_terrain_set_status(wp_nav->update_wpnav());
// WP_Nav has set the vertical position control targets
// run the vertical position controller and set output throttle
pos_control->update_z_controller();
// call attitude controller
if (auto_yaw.mode() == AUTO_YAW_HOLD) {
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control->input_thrust_vector_rate_heading(wp_nav->get_thrust_vector(), target_yaw_rate);
}else{
// roll, pitch from waypoint controller, yaw heading from auto_heading()
attitude_control->input_thrust_vector_heading(wp_nav->get_thrust_vector(), auto_yaw.yaw());
}
// check if we've completed this stage of RTL
if ((millis() - _loiter_start_time) >= (uint32_t)g.rtl_loiter_time.get()) {
if (auto_yaw.mode() == AUTO_YAW_RESETTOARMEDYAW) {
// check if heading is within 2 degrees of heading when vehicle was armed
if (abs(wrap_180_cd(ahrs.yaw_sensor-copter.initial_armed_bearing)) <= 200) {
_state_complete = true;
}
} else {
// we have loitered long enough
_state_complete = true;
}
}
}
// rtl_descent_start - initialise descent to final alt
void ModeRTL::descent_start()
{
_state = SubMode::FINAL_DESCENT;
_state_complete = false;
// initialise altitude target to stopping point
pos_control->init_z_controller_stopping_point();
// initialise yaw
auto_yaw.set_mode(AUTO_YAW_HOLD);
#if LANDING_GEAR_ENABLED == ENABLED
// optionally deploy landing gear
copter.landinggear.deploy_for_landing();
#endif
#if AC_FENCE == ENABLED
// disable the fence on landing
copter.fence.auto_disable_fence_for_landing();
#endif
}
// rtl_descent_run - implements the final descent to the RTL_ALT
// called by rtl_run at 100hz or more
void ModeRTL::descent_run()
{
Vector2f vel_correction;
float target_yaw_rate = 0.0f;
// if not armed set throttle to zero and exit immediately
if (is_disarmed_or_landed()) {
make_safe_ground_handling();
return;
}
// process pilot's input
if (!copter.failsafe.radio) {
if ((g.throttle_behavior & THR_BEHAVE_HIGH_THROTTLE_CANCELS_LAND) != 0 && copter.rc_throttle_control_in_filter.get() > LAND_CANCEL_TRIGGER_THR){
AP::logger().Write_Event(LogEvent::LAND_CANCELLED_BY_PILOT);
// exit land if throttle is high
if (!copter.set_mode(Mode::Number::LOITER, ModeReason::THROTTLE_LAND_ESCAPE)) {
copter.set_mode(Mode::Number::ALT_HOLD, ModeReason::THROTTLE_LAND_ESCAPE);
}
}
if (g.land_repositioning) {
// apply SIMPLE mode transform to pilot inputs
update_simple_mode();
// convert pilot input to reposition velocity
vel_correction = get_pilot_desired_velocity(wp_nav->get_wp_acceleration() * 0.5);
// record if pilot has overridden roll or pitch
if (!vel_correction.is_zero()) {
if (!copter.ap.land_repo_active) {
AP::logger().Write_Event(LogEvent::LAND_REPO_ACTIVE);
}
copter.ap.land_repo_active = true;
}
}
if (g.land_repositioning || use_pilot_yaw()) {
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->norm_input_dz());
}
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
Vector2f accel;
pos_control->input_vel_accel_xy(vel_correction, accel);
pos_control->update_xy_controller();
// WP_Nav has set the vertical position control targets
// run the vertical position controller and set output throttle
pos_control->set_alt_target_with_slew(rtl_path.descent_target.alt);
pos_control->update_z_controller();
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control->input_thrust_vector_rate_heading(pos_control->get_thrust_vector(), target_yaw_rate);
// check if we've reached within 20cm of final altitude
_state_complete = labs(rtl_path.descent_target.alt - copter.current_loc.alt) < 20;
}
// land_start - initialise controllers to loiter over home
void ModeRTL::land_start()
{
_state = SubMode::LAND;
_state_complete = false;
// set horizontal speed and acceleration limits
pos_control->set_max_speed_accel_xy(wp_nav->get_default_speed_xy(), wp_nav->get_wp_acceleration());
pos_control->set_correction_speed_accel_xy(wp_nav->get_default_speed_xy(), wp_nav->get_wp_acceleration());
// initialise loiter target destination
if (!pos_control->is_active_xy()) {
pos_control->init_xy_controller();
}
// initialise the vertical position controller
if (!pos_control->is_active_z()) {
pos_control->init_z_controller();
}
// initialise yaw
auto_yaw.set_mode(AUTO_YAW_HOLD);
#if LANDING_GEAR_ENABLED == ENABLED
// optionally deploy landing gear
copter.landinggear.deploy_for_landing();
#endif
#if AC_FENCE == ENABLED
// disable the fence on landing
copter.fence.auto_disable_fence_for_landing();
#endif
}
bool ModeRTL::is_landing() const
{
return _state == SubMode::LAND;
}
// land_run - run the landing controllers to put the aircraft on the ground
// called by rtl_run at 100hz or more
void ModeRTL::land_run(bool disarm_on_land)
{
// check if we've completed this stage of RTL
_state_complete = copter.ap.land_complete;
// disarm when the landing detector says we've landed
if (disarm_on_land && copter.ap.land_complete && motors->get_spool_state() == AP_Motors::SpoolState::GROUND_IDLE) {
copter.arming.disarm(AP_Arming::Method::LANDED);
}
// if not armed set throttle to zero and exit immediately
if (is_disarmed_or_landed()) {
make_safe_ground_handling();
return;
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// run normal landing or precision landing (if enabled)
land_run_normal_or_precland();
}
void ModeRTL::build_path()
{
// origin point is our stopping point
Vector3p stopping_point;
pos_control->get_stopping_point_xy_cm(stopping_point.xy());
pos_control->get_stopping_point_z_cm(stopping_point.z);
rtl_path.origin_point = Location(stopping_point.tofloat(), Location::AltFrame::ABOVE_ORIGIN);
rtl_path.origin_point.change_alt_frame(Location::AltFrame::ABOVE_HOME);
// compute return target
compute_return_target();
// climb target is above our origin point at the return altitude
rtl_path.climb_target = Location(rtl_path.origin_point.lat, rtl_path.origin_point.lng, rtl_path.return_target.alt, rtl_path.return_target.get_alt_frame());
// descent target is below return target at rtl_alt_final
rtl_path.descent_target = Location(rtl_path.return_target.lat, rtl_path.return_target.lng, g.rtl_alt_final, Location::AltFrame::ABOVE_HOME);
// set land flag
rtl_path.land = g.rtl_alt_final <= 0;
}
// compute the return target - home or rally point
// return target's altitude is updated to a higher altitude that the vehicle can safely return at (frame may also be set)
void ModeRTL::compute_return_target()
{
// set return target to nearest rally point or home position (Note: alt is absolute)
#if AC_RALLY == ENABLED
rtl_path.return_target = copter.rally.calc_best_rally_or_home_location(copter.current_loc, ahrs.get_home().alt);
#else
rtl_path.return_target = ahrs.get_home();
#endif
// curr_alt is current altitude above home or above terrain depending upon use_terrain
int32_t curr_alt = copter.current_loc.alt;
// determine altitude type of return journey (alt-above-home, alt-above-terrain using range finder or alt-above-terrain using terrain database)
ReturnTargetAltType alt_type = ReturnTargetAltType::RELATIVE;
if (terrain_following_allowed && (get_alt_type() == RTLAltType::RTL_ALTTYPE_TERRAIN)) {
// convert RTL_ALT_TYPE and WPNAV_RFNG_USE parameters to ReturnTargetAltType
switch (wp_nav->get_terrain_source()) {
case AC_WPNav::TerrainSource::TERRAIN_UNAVAILABLE:
alt_type = ReturnTargetAltType::RELATIVE;
AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::RTL_MISSING_RNGFND);
gcs().send_text(MAV_SEVERITY_CRITICAL, "RTL: no terrain data, using alt-above-home");
break;
case AC_WPNav::TerrainSource::TERRAIN_FROM_RANGEFINDER:
alt_type = ReturnTargetAltType::RANGEFINDER;
break;
case AC_WPNav::TerrainSource::TERRAIN_FROM_TERRAINDATABASE:
alt_type = ReturnTargetAltType::TERRAINDATABASE;
break;
}
}
// set curr_alt and return_target.alt from range finder
if (alt_type == ReturnTargetAltType::RANGEFINDER) {
if (copter.get_rangefinder_height_interpolated_cm(curr_alt)) {
// set return_target.alt
rtl_path.return_target.set_alt_cm(MAX(curr_alt + MAX(0, g.rtl_climb_min), MAX(g.rtl_altitude, RTL_ALT_MIN)), Location::AltFrame::ABOVE_TERRAIN);
} else {
// fallback to relative alt and warn user
alt_type = ReturnTargetAltType::RELATIVE;
gcs().send_text(MAV_SEVERITY_CRITICAL, "RTL: rangefinder unhealthy, using alt-above-home");
AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::RTL_MISSING_RNGFND);
}
}
// set curr_alt and return_target.alt from terrain database
if (alt_type == ReturnTargetAltType::TERRAINDATABASE) {
// set curr_alt to current altitude above terrain
// convert return_target.alt from an abs (above MSL) to altitude above terrain
// Note: the return_target may be a rally point with the alt set above the terrain alt (like the top of a building)
int32_t curr_terr_alt;
if (copter.current_loc.get_alt_cm(Location::AltFrame::ABOVE_TERRAIN, curr_terr_alt) &&
rtl_path.return_target.change_alt_frame(Location::AltFrame::ABOVE_TERRAIN)) {
curr_alt = curr_terr_alt;
} else {
// fallback to relative alt and warn user
alt_type = ReturnTargetAltType::RELATIVE;
AP::logger().Write_Error(LogErrorSubsystem::TERRAIN, LogErrorCode::MISSING_TERRAIN_DATA);
gcs().send_text(MAV_SEVERITY_CRITICAL, "RTL: no terrain data, using alt-above-home");
}
}
// for the default case we must convert return-target alt (which is an absolute alt) to alt-above-home
if (alt_type == ReturnTargetAltType::RELATIVE) {
if (!rtl_path.return_target.change_alt_frame(Location::AltFrame::ABOVE_HOME)) {
// this should never happen but just in case
rtl_path.return_target.set_alt_cm(0, Location::AltFrame::ABOVE_HOME);
gcs().send_text(MAV_SEVERITY_WARNING, "RTL: unexpected error calculating target alt");
}
}
// set new target altitude to return target altitude
// Note: this is alt-above-home or terrain-alt depending upon rtl_alt_type
// Note: ignore negative altitudes which could happen if user enters negative altitude for rally point or terrain is higher at rally point compared to home
int32_t target_alt = MAX(rtl_path.return_target.alt, 0);
// increase target to maximum of current altitude + climb_min and rtl altitude
target_alt = MAX(target_alt, curr_alt + MAX(0, g.rtl_climb_min));
target_alt = MAX(target_alt, MAX(g.rtl_altitude, RTL_ALT_MIN));
// reduce climb if close to return target
float rtl_return_dist_cm = rtl_path.return_target.get_distance(rtl_path.origin_point) * 100.0f;
// don't allow really shallow slopes
if (g.rtl_cone_slope >= RTL_MIN_CONE_SLOPE) {
target_alt = MAX(curr_alt, MIN(target_alt, MAX(rtl_return_dist_cm*g.rtl_cone_slope, curr_alt+RTL_ABS_MIN_CLIMB)));
}
// set returned target alt to new target_alt (don't change altitude type)
rtl_path.return_target.set_alt_cm(target_alt, (alt_type == ReturnTargetAltType::RELATIVE) ? Location::AltFrame::ABOVE_HOME : Location::AltFrame::ABOVE_TERRAIN);
#if AC_FENCE == ENABLED
// ensure not above fence altitude if alt fence is enabled
// Note: because the rtl_path.climb_target's altitude is simply copied from the return_target's altitude,
// if terrain altitudes are being used, the code below which reduces the return_target's altitude can lead to
// the vehicle not climbing at all as RTL begins. This can be overly conservative and it might be better
// to apply the fence alt limit independently on the origin_point and return_target
if ((copter.fence.get_enabled_fences() & AC_FENCE_TYPE_ALT_MAX) != 0) {
// get return target as alt-above-home so it can be compared to fence's alt
if (rtl_path.return_target.get_alt_cm(Location::AltFrame::ABOVE_HOME, target_alt)) {
float fence_alt = copter.fence.get_safe_alt_max()*100.0f;
if (target_alt > fence_alt) {
// reduce target alt to the fence alt
rtl_path.return_target.alt -= (target_alt - fence_alt);
}
}
}
#endif
// ensure we do not descend
rtl_path.return_target.alt = MAX(rtl_path.return_target.alt, curr_alt);
}
bool ModeRTL::get_wp(Location& destination) const
{
// provide target in states which use wp_nav
switch (_state) {
case SubMode::STARTING:
case SubMode::INITIAL_CLIMB:
case SubMode::RETURN_HOME:
case SubMode::LOITER_AT_HOME:
case SubMode::FINAL_DESCENT:
return wp_nav->get_oa_wp_destination(destination);
case SubMode::LAND:
return false;
}
// we should never get here but just in case
return false;
}
uint32_t ModeRTL::wp_distance() const
{
return wp_nav->get_wp_distance_to_destination();
}
int32_t ModeRTL::wp_bearing() const
{
return wp_nav->get_wp_bearing_to_destination();
}
// returns true if pilot's yaw input should be used to adjust vehicle's heading
bool ModeRTL::use_pilot_yaw(void) const
{
return (copter.g2.rtl_options.get() & uint32_t(Options::IgnorePilotYaw)) == 0;
}
#endif