ardupilot/ArduCopter/mode.h

1089 lines
34 KiB
C++

#pragma once
// this class is #included into the Copter:: namespace
class Mode {
friend class Copter;
friend class AP_Arming_Copter;
friend class ToyMode;
// constructor
Mode(void);
protected:
virtual bool init(bool ignore_checks) = 0;
virtual void run() = 0;
virtual bool is_autopilot() const { return false; }
virtual bool requires_GPS() const = 0;
virtual bool has_manual_throttle() const = 0;
virtual bool allows_arming(bool from_gcs) const = 0;
virtual bool landing_gear_should_be_deployed() const { return false; }
virtual const char *name() const = 0;
// returns a string for this flightmode, exactly 4 bytes
virtual const char *name4() const = 0;
// navigation support functions:
void update_navigation();
virtual void run_autopilot() {}
virtual uint32_t wp_distance() const { return 0; }
virtual int32_t wp_bearing() const { return 0; }
// convenience references to avoid code churn in conversion:
Parameters &g;
ParametersG2 &g2;
AC_WPNav *&wp_nav;
AC_PosControl *&pos_control;
AP_InertialNav &inertial_nav;
AP_AHRS &ahrs;
AC_AttitudeControl_t *&attitude_control;
MOTOR_CLASS *&motors;
RC_Channel *&channel_roll;
RC_Channel *&channel_pitch;
RC_Channel *&channel_throttle;
RC_Channel *&channel_yaw;
float &G_Dt;
ap_t ≈
takeoff_state_t &takeoff_state;
// takeoff support
bool takeoff_triggered(float target_climb_rate) const;
// gnd speed limit required to observe optical flow sensor limits
float &ekfGndSpdLimit;
// scale factor applied to velocity controller gain to prevent optical flow noise causing excessive angle demand noise
float &ekfNavVelGainScaler;
// Navigation Yaw control
// auto flight mode's yaw mode
uint8_t &auto_yaw_mode;
#if FRAME_CONFIG == HELI_FRAME
heli_flags_t &heli_flags;
#endif
// pass-through functions to reduce code churn on conversion;
// these are candidates for moving into the Mode base
// class.
void get_pilot_desired_lean_angles(float roll_in, float pitch_in, float &roll_out, float &pitch_out, float angle_max);
float get_surface_tracking_climb_rate(int16_t target_rate, float current_alt_target, float dt);
float get_pilot_desired_yaw_rate(int16_t stick_angle);
float get_pilot_desired_climb_rate(float throttle_control);
float get_pilot_desired_throttle(int16_t throttle_control, float thr_mid = 0.0f);
float get_non_takeoff_throttle(void);
void update_simple_mode(void);
float get_smoothing_gain(void);
bool set_mode(control_mode_t mode, mode_reason_t reason);
void set_land_complete(bool b);
GCS_Copter &gcs();
void Log_Write_Event(uint8_t id);
void set_throttle_takeoff(void);
void set_auto_yaw_mode(uint8_t yaw_mode);
void set_auto_yaw_rate(float turn_rate_cds);
void set_auto_yaw_look_at_heading(float angle_deg, float turn_rate_dps, int8_t direction, bool relative_angle);
void takeoff_timer_start(float alt_cm);
void takeoff_stop(void);
void takeoff_get_climb_rates(float& pilot_climb_rate, float& takeoff_climb_rate);
float get_auto_heading(void);
float get_auto_yaw_rate_cds(void);
float get_avoidance_adjusted_climbrate(float target_rate);
uint16_t get_pilot_speed_dn(void);
// end pass-through functions
void zero_throttle_and_relax_ac();
};
class ModeAcro : public Mode {
public:
// inherit constructor
using Copter::Mode::Mode;
virtual bool init(bool ignore_checks) override;
virtual void run() override;
bool is_autopilot() const override { return false; }
bool requires_GPS() const override { return false; }
bool has_manual_throttle() const override { return true; }
bool allows_arming(bool from_gcs) const override { return true; };
protected:
const char *name() const override { return "ACRO"; }
const char *name4() const override { return "ACRO"; }
void get_pilot_desired_angle_rates(int16_t roll_in, int16_t pitch_in, int16_t yaw_in, float &roll_out, float &pitch_out, float &yaw_out);
private:
};
#if FRAME_CONFIG == HELI_FRAME
class ModeAcro_Heli : public ModeAcro {
public:
// inherit constructor
using Copter::ModeAcro::Mode;
bool init(bool ignore_checks) override;
void run() override;
protected:
private:
};
#endif
class ModeAltHold : public Mode {
public:
// inherit constructor
using Copter::Mode::Mode;
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return false; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return true; };
bool is_autopilot() const override { return false; }
protected:
const char *name() const override { return "ALT_HOLD"; }
const char *name4() const override { return "ALTH"; }
private:
};
class ModeAuto : public Mode {
public:
// inherit constructor
using Copter::Mode::Mode;
bool init(bool ignore_checks) override;
void run() override;
bool is_autopilot() const override { return true; }
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return false; };
// Auto
AutoMode mode() const { return _mode; }
bool loiter_start();
void rtl_start();
void takeoff_start(const Location& dest_loc);
void wp_start(const Vector3f& destination);
void wp_start(const Location_Class& dest_loc);
void land_start();
void land_start(const Vector3f& destination);
void circle_movetoedge_start(const Location_Class &circle_center, float radius_m);
void circle_start();
void spline_start(const Vector3f& destination, bool stopped_at_start, AC_WPNav::spline_segment_end_type seg_end_type, const Vector3f& next_spline_destination);
void spline_start(const Location_Class& destination, bool stopped_at_start, AC_WPNav::spline_segment_end_type seg_end_type, const Location_Class& next_destination);
void nav_guided_start();
bool landing_gear_should_be_deployed() const override;
void payload_place_start();
// only out here temporarily
bool start_command(const AP_Mission::Mission_Command& cmd);
bool verify_command_callback(const AP_Mission::Mission_Command& cmd);
void exit_mission();
// for GCS_MAVLink to call:
bool do_guided(const AP_Mission::Mission_Command& cmd);
protected:
const char *name() const override { return "AUTO"; }
const char *name4() const override { return "AUTO"; }
uint32_t wp_distance() const override;
int32_t wp_bearing() const override;
void run_autopilot() override;
private:
bool verify_command(const AP_Mission::Mission_Command& cmd);
void takeoff_run();
void wp_run();
void spline_run();
void land_run();
void rtl_run();
void circle_run();
void nav_guided_run();
void loiter_run();
void payload_place_start(const Vector3f& destination);
void payload_place_run();
bool payload_place_run_should_run();
void payload_place_run_loiter();
void payload_place_run_descend();
void payload_place_run_release();
AutoMode _mode = Auto_TakeOff; // controls which auto controller is run
Location_Class terrain_adjusted_location(const AP_Mission::Mission_Command& cmd) const;
void do_takeoff(const AP_Mission::Mission_Command& cmd);
void do_nav_wp(const AP_Mission::Mission_Command& cmd);
void do_land(const AP_Mission::Mission_Command& cmd);
void do_loiter_unlimited(const AP_Mission::Mission_Command& cmd);
void do_circle(const AP_Mission::Mission_Command& cmd);
void do_loiter_time(const AP_Mission::Mission_Command& cmd);
void do_spline_wp(const AP_Mission::Mission_Command& cmd);
#if NAV_GUIDED == ENABLED
void do_nav_guided_enable(const AP_Mission::Mission_Command& cmd);
void do_guided_limits(const AP_Mission::Mission_Command& cmd);
#endif
void do_nav_delay(const AP_Mission::Mission_Command& cmd);
void do_wait_delay(const AP_Mission::Mission_Command& cmd);
void do_within_distance(const AP_Mission::Mission_Command& cmd);
void do_yaw(const AP_Mission::Mission_Command& cmd);
void do_change_speed(const AP_Mission::Mission_Command& cmd);
void do_set_home(const AP_Mission::Mission_Command& cmd);
void do_roi(const AP_Mission::Mission_Command& cmd);
void do_mount_control(const AP_Mission::Mission_Command& cmd);
#if CAMERA == ENABLED
void do_digicam_configure(const AP_Mission::Mission_Command& cmd);
void do_digicam_control(const AP_Mission::Mission_Command& cmd);
#endif
#if PARACHUTE == ENABLED
void do_parachute(const AP_Mission::Mission_Command& cmd);
#endif
#if GRIPPER_ENABLED == ENABLED
void do_gripper(const AP_Mission::Mission_Command& cmd);
#endif
#if WINCH_ENABLED == ENABLED
void do_winch(const AP_Mission::Mission_Command& cmd);
#endif
void do_payload_place(const AP_Mission::Mission_Command& cmd);
void do_RTL(void);
bool verify_takeoff();
bool verify_land();
bool verify_payload_place();
bool verify_loiter_unlimited();
bool verify_loiter_time();
bool verify_RTL();
bool verify_wait_delay();
bool verify_within_distance();
bool verify_yaw();
bool verify_nav_wp(const AP_Mission::Mission_Command& cmd);
bool verify_circle(const AP_Mission::Mission_Command& cmd);
bool verify_spline_wp(const AP_Mission::Mission_Command& cmd);
#if NAV_GUIDED == ENABLED
bool verify_nav_guided_enable(const AP_Mission::Mission_Command& cmd);
#endif
bool verify_nav_delay(const AP_Mission::Mission_Command& cmd);
void auto_spline_start(const Location_Class& destination, bool stopped_at_start, AC_WPNav::spline_segment_end_type seg_end_type, const Location_Class& next_destination);
// Loiter control
uint16_t loiter_time_max; // How long we should stay in Loiter Mode for mission scripting (time in seconds)
uint32_t loiter_time; // How long have we been loitering - The start time in millis
// Delay the next navigation command
int32_t nav_delay_time_max; // used for delaying the navigation commands (eg land,takeoff etc.)
uint32_t nav_delay_time_start;
// Delay Mission Scripting Command
int32_t condition_value; // used in condition commands (eg delay, change alt, etc.)
uint32_t condition_start;
LandStateType land_state = LandStateType_FlyToLocation; // records state of land (flying to location, descending)
struct {
PayloadPlaceStateType state = PayloadPlaceStateType_Calibrating_Hover_Start; // records state of place (descending, releasing, released, ...)
uint32_t hover_start_timestamp; // milliseconds
float hover_throttle_level;
uint32_t descend_start_timestamp; // milliseconds
uint32_t place_start_timestamp; // milliseconds
float descend_throttle_level;
float descend_start_altitude;
float descend_max; // centimetres
} nav_payload_place;
};
#if AUTOTUNE_ENABLED == ENABLED
class ModeAutoTune : public Mode {
public:
// inherit constructor
using Copter::Mode::Mode;
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return false; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return false; }
bool is_autopilot() const override { return false; }
void save_tuning_gains();
void stop();
protected:
const char *name() const override { return "AUTOTUNE"; }
const char *name4() const override { return "ATUN"; }
private:
bool start(bool ignore_checks);
void autotune_attitude_control();
void backup_gains_and_initialise();
void load_orig_gains();
void load_tuned_gains();
void load_intra_test_gains();
void load_twitch_gains();
void update_gcs(uint8_t message_id);
bool roll_enabled();
bool pitch_enabled();
bool yaw_enabled();
void twitching_test(float measurement, float target, float &measurement_min, float &measurement_max);
void updating_d_up(float &tune_d, float tune_d_min, float tune_d_max, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float target, float measurement_min, float measurement_max);
void updating_d_down(float &tune_d, float tune_d_min, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float target, float measurement_min, float measurement_max);
void updating_p_down(float &tune_p, float tune_p_min, float tune_p_step_ratio, float target, float measurement_max);
void updating_p_up(float &tune_p, float tune_p_max, float tune_p_step_ratio, float target, float measurement_max);
void updating_p_up_d_down(float &tune_d, float tune_d_min, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float target, float measurement_min, float measurement_max);
void twitching_measure_acceleration(float &rate_of_change, float rate_measurement, float &rate_measurement_max);
void get_poshold_attitude(float &roll_cd, float &pitch_cd, float &yaw_cd);
void Log_Write_AutoTune(uint8_t axis, uint8_t tune_step, float meas_target, float meas_min, float meas_max, float new_gain_rp, float new_gain_rd, float new_gain_sp, float new_ddt);
void Log_Write_AutoTuneDetails(float angle_cd, float rate_cds);
void send_step_string();
const char *level_issue_string() const;
const char * type_string() const;
void announce_state_to_gcs();
void do_gcs_announcements();
enum LEVEL_ISSUE {
LEVEL_ISSUE_NONE,
LEVEL_ISSUE_ANGLE_ROLL,
LEVEL_ISSUE_ANGLE_PITCH,
LEVEL_ISSUE_ANGLE_YAW,
LEVEL_ISSUE_RATE_ROLL,
LEVEL_ISSUE_RATE_PITCH,
LEVEL_ISSUE_RATE_YAW,
};
bool check_level(const enum LEVEL_ISSUE issue, const float current, const float maximum);
bool currently_level();
// autotune modes (high level states)
enum TuneMode {
UNINITIALISED = 0, // autotune has never been run
TUNING = 1, // autotune is testing gains
SUCCESS = 2, // tuning has completed, user is flight testing the new gains
FAILED = 3, // tuning has failed, user is flying on original gains
};
// steps performed while in the tuning mode
enum StepType {
WAITING_FOR_LEVEL = 0, // autotune is waiting for vehicle to return to level before beginning the next twitch
TWITCHING = 1, // autotune has begun a twitch and is watching the resulting vehicle movement
UPDATE_GAINS = 2 // autotune has completed a twitch and is updating the gains based on the results
};
// things that can be tuned
enum AxisType {
ROLL = 0, // roll axis is being tuned (either angle or rate)
PITCH = 1, // pitch axis is being tuned (either angle or rate)
YAW = 2, // pitch axis is being tuned (either angle or rate)
};
// mini steps performed while in Tuning mode, Testing step
enum TuneType {
RD_UP = 0, // rate D is being tuned up
RD_DOWN = 1, // rate D is being tuned down
RP_UP = 2, // rate P is being tuned up
SP_DOWN = 3, // angle P is being tuned down
SP_UP = 4 // angle P is being tuned up
};
TuneMode mode : 2; // see TuneMode for what modes are allowed
bool pilot_override : 1; // true = pilot is overriding controls so we suspend tuning temporarily
AxisType axis : 2; // see AxisType for which things can be tuned
bool positive_direction : 1; // false = tuning in negative direction (i.e. left for roll), true = positive direction (i.e. right for roll)
StepType step : 2; // see StepType for what steps are performed
TuneType tune_type : 3; // see TuneType
bool ignore_next : 1; // true = ignore the next test
bool twitch_first_iter : 1; // true on first iteration of a twitch (used to signal we must step the attitude or rate target)
bool use_poshold : 1; // true = enable position hold
bool have_position : 1; // true = start_position is value
Vector3f start_position;
// variables
uint32_t override_time; // the last time the pilot overrode the controls
float test_min; // the minimum angular rate achieved during TESTING_RATE step
float test_max; // the maximum angular rate achieved during TESTING_RATE step
uint32_t step_start_time; // start time of current tuning step (used for timeout checks)
uint32_t step_stop_time; // start time of current tuning step (used for timeout checks)
int8_t counter; // counter for tuning gains
float target_rate, start_rate; // target and start rate
float target_angle, start_angle; // target and start angles
float desired_yaw; // yaw heading during tune
float rate_max, test_accel_max; // maximum acceleration variables
LowPassFilterFloat rotation_rate_filt; // filtered rotation rate in radians/second
// backup of currently being tuned parameter values
float orig_roll_rp = 0, orig_roll_ri, orig_roll_rd, orig_roll_sp, orig_roll_accel;
float orig_pitch_rp = 0, orig_pitch_ri, orig_pitch_rd, orig_pitch_sp, orig_pitch_accel;
float orig_yaw_rp = 0, orig_yaw_ri, orig_yaw_rd, orig_yaw_rLPF, orig_yaw_sp, orig_yaw_accel;
bool orig_bf_feedforward;
// currently being tuned parameter values
float tune_roll_rp, tune_roll_rd, tune_roll_sp, tune_roll_accel;
float tune_pitch_rp, tune_pitch_rd, tune_pitch_sp, tune_pitch_accel;
float tune_yaw_rp, tune_yaw_rLPF, tune_yaw_sp, tune_yaw_accel;
uint32_t announce_time;
float lean_angle;
float rotation_rate;
float roll_cd, pitch_cd;
struct {
LEVEL_ISSUE issue{LEVEL_ISSUE_NONE};
float maximum;
float current;
} level_problem;
};
#endif
class ModeBrake : public Mode {
public:
// inherit constructor
using Copter::Mode::Mode;
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return false; };
bool is_autopilot() const override { return false; }
void timeout_to_loiter_ms(uint32_t timeout_ms);
protected:
const char *name() const override { return "BRAKE"; }
const char *name4() const override { return "BRAK"; }
private:
uint32_t _timeout_start;
uint32_t _timeout_ms;
};
class ModeCircle : public Mode {
public:
// inherit constructor
using Copter::Mode::Mode;
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return false; };
bool is_autopilot() const override { return true; }
protected:
const char *name() const override { return "CIRCLE"; }
const char *name4() const override { return "CIRC"; }
uint32_t wp_distance() const override;
int32_t wp_bearing() const override;
private:
// Circle
bool pilot_yaw_override = false; // true if pilot is overriding yaw
};
class ModeDrift : public Mode {
public:
// inherit constructor
using Copter::Mode::Mode;
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return true; };
bool is_autopilot() const override { return false; }
protected:
const char *name() const override { return "DRIFT"; }
const char *name4() const override { return "DRIF"; }
private:
float get_throttle_assist(float velz, float pilot_throttle_scaled);
};
class ModeFlip : public Mode {
public:
// inherit constructor
using Copter::Mode::Mode;
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return false; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return false; };
bool is_autopilot() const override { return false; }
protected:
const char *name() const override { return "FLIP"; }
const char *name4() const override { return "FLIP"; }
private:
// Flip
Vector3f flip_orig_attitude; // original vehicle attitude before flip
};
#if !HAL_MINIMIZE_FEATURES && OPTFLOW == ENABLED
/*
class to support FLOWHOLD mode, which is a position hold mode using
optical flow directly, avoiding the need for a rangefinder
*/
class ModeFlowHold : public Mode {
public:
// need a constructor for parameters
ModeFlowHold(void);
bool init(bool ignore_checks) override;
void run(void) override;
bool requires_GPS() const override { return false; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return true; };
bool is_autopilot() const override { return false; }
static const struct AP_Param::GroupInfo var_info[];
protected:
const char *name() const override { return "FLOWHOLD"; }
const char *name4() const override { return "FHLD"; }
private:
// FlowHold states
enum FlowHoldModeState {
FlowHold_MotorStopped,
FlowHold_Takeoff,
FlowHold_Flying,
FlowHold_Landed
};
// calculate attitude from flow data
void flow_to_angle(Vector2f &bf_angle);
LowPassFilterVector2f flow_filter;
bool flowhold_init(bool ignore_checks);
void flowhold_run();
void flowhold_flow_to_angle(Vector2f &angle, bool stick_input);
void update_height_estimate(void);
// minimum assumed height
const float height_min = 0.1;
// maximum scaling height
const float height_max = 3.0;
AP_Float flow_max;
AC_PI_2D flow_pi_xy{0.2, 0.3, 3000, 5, 0.0025};
AP_Float flow_filter_hz;
AP_Int8 flow_min_quality;
AP_Int8 brake_rate_dps;
float quality_filtered;
uint8_t log_counter;
bool limited;
Vector2f xy_I;
// accumulated INS delta velocity in north-east form since last flow update
Vector2f delta_velocity_ne;
// last flow rate in radians/sec in north-east axis
Vector2f last_flow_rate_rps;
// timestamp of last flow data
uint32_t last_flow_ms;
float last_ins_height;
float height_offset;
// are we braking after pilot input?
bool braking;
// last time there was significant stick input
uint32_t last_stick_input_ms;
};
#endif // OPTFLOW
class ModeGuided : public Mode {
public:
// inherit constructor
using Copter::Mode::Mode;
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return from_gcs; }
bool is_autopilot() const override { return true; }
void set_angle(const Quaternion &q, float climb_rate_cms, bool use_yaw_rate, float yaw_rate_rads);
bool set_destination(const Vector3f& destination, bool use_yaw = false, float yaw_cd = 0.0, bool use_yaw_rate = false, float yaw_rate_cds = 0.0, bool yaw_relative = false);
bool set_destination(const Location_Class& dest_loc, bool use_yaw = false, float yaw_cd = 0.0, bool use_yaw_rate = false, float yaw_rate_cds = 0.0, bool yaw_relative = false);
void set_velocity(const Vector3f& velocity, bool use_yaw = false, float yaw_cd = 0.0, bool use_yaw_rate = false, float yaw_rate_cds = 0.0, bool yaw_relative = false);
bool set_destination_posvel(const Vector3f& destination, const Vector3f& velocity, bool use_yaw = false, float yaw_cd = 0.0, bool use_yaw_rate = false, float yaw_rate_cds = 0.0, bool yaw_relative = false);
void limit_clear();
void limit_init_time_and_pos();
void limit_set(uint32_t timeout_ms, float alt_min_cm, float alt_max_cm, float horiz_max_cm);
bool limit_check();
bool takeoff_start(float final_alt_above_home);
GuidedMode mode() const { return guided_mode; }
void angle_control_start();
void angle_control_run();
protected:
const char *name() const override { return "GUIDED"; }
const char *name4() const override { return "GUID"; }
uint32_t wp_distance() const override;
int32_t wp_bearing() const override;
private:
void pos_control_start();
void vel_control_start();
void posvel_control_start();
void takeoff_run();
void pos_control_run();
void vel_control_run();
void posvel_control_run();
void set_desired_velocity_with_accel_and_fence_limits(const Vector3f& vel_des);
void set_yaw_state(bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_angle);
// controls which controller is run (pos or vel):
GuidedMode guided_mode = Guided_TakeOff;
};
class ModeGuidedNoGPS : public ModeGuided {
public:
// inherit constructor
using Copter::ModeGuided::Mode;
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return from_gcs; }
bool is_autopilot() const override { return true; }
protected:
const char *name() const override { return "GUIDED_NOGPS"; }
const char *name4() const override { return "GNGP"; }
private:
};
class ModeLand : public Mode {
public:
// inherit constructor
using Copter::Mode::Mode;
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return false; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return false; };
bool is_autopilot() const override { return true; }
bool landing_gear_should_be_deployed() const override { return true; };
float get_land_descent_speed();
bool landing_with_GPS();
void do_not_use_GPS();
int32_t get_alt_above_ground(void);
protected:
const char *name() const override { return "LAND"; }
const char *name4() const override { return "LAND"; }
private:
void gps_run();
void nogps_run();
};
class ModeLoiter : public Mode {
public:
// inherit constructor
using Copter::Mode::Mode;
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return true; };
bool is_autopilot() const override { return false; }
#if PRECISION_LANDING == ENABLED
void set_precision_loiter_enabled(bool value) { _precision_loiter_enabled = value; }
#endif
protected:
const char *name() const override { return "LOITER"; }
const char *name4() const override { return "LOIT"; }
uint32_t wp_distance() const override;
int32_t wp_bearing() const override;
#if PRECISION_LANDING == ENABLED
bool do_precision_loiter();
void precision_loiter_xy();
#endif
private:
#if PRECISION_LANDING == ENABLED
bool _precision_loiter_enabled;
#endif
};
class ModePosHold : public Mode {
public:
// inherit constructor
using Copter::Mode::Mode;
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return true; };
bool is_autopilot() const override { return false; }
protected:
const char *name() const override { return "POSHOLD"; }
const char *name4() const override { return "PHLD"; }
private:
void poshold_update_pilot_lean_angle(float &lean_angle_filtered, float &lean_angle_raw);
int16_t poshold_mix_controls(float mix_ratio, int16_t first_control, int16_t second_control);
void poshold_update_brake_angle_from_velocity(int16_t &brake_angle, float velocity);
void poshold_update_wind_comp_estimate();
void poshold_get_wind_comp_lean_angles(int16_t &roll_angle, int16_t &pitch_angle);
void poshold_roll_controller_to_pilot_override();
void poshold_pitch_controller_to_pilot_override();
};
class ModeRTL : public Mode {
public:
// inherit constructor
using Copter::Mode::Mode;
bool init(bool ignore_checks) override;
void run() override {
return run(true);
}
void run(bool disarm_on_land);
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return false; };
bool is_autopilot() const override { return true; }
RTLState state() { return _state; }
// this should probably not be exposed
bool state_complete() { return _state_complete; }
bool landing_gear_should_be_deployed() const override;
void restart_without_terrain();
protected:
const char *name() const override { return "RTL"; }
const char *name4() const override { return "RTL "; }
uint32_t wp_distance() const override;
int32_t wp_bearing() const override;
void descent_start();
void descent_run();
void land_start();
void land_run(bool disarm_on_land);
void set_descent_target_alt(uint32_t alt) { rtl_path.descent_target.alt = alt; }
private:
void climb_start();
void return_start();
void climb_return_run();
void loiterathome_start();
void loiterathome_run();
void build_path(bool terrain_following_allowed);
void compute_return_target(bool terrain_following_allowed);
// RTL
RTLState _state = RTL_InitialClimb; // records state of rtl (initial climb, returning home, etc)
bool _state_complete = false; // set to true if the current state is completed
struct {
// NEU w/ Z element alt-above-ekf-origin unless use_terrain is true in which case Z element is alt-above-terrain
Location_Class origin_point;
Location_Class climb_target;
Location_Class return_target;
Location_Class descent_target;
bool land;
bool terrain_used;
} rtl_path;
// Loiter timer - Records how long we have been in loiter
uint32_t _loiter_start_time = 0;
};
class ModeSmartRTL : public ModeRTL {
public:
// inherit constructor
using Copter::ModeRTL::Mode;
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return false; }
bool is_autopilot() const override { return true; }
void save_position();
void exit();
protected:
const char *name() const override { return "SMARTRTL"; }
const char *name4() const override { return "SRTL"; }
uint32_t wp_distance() const override;
int32_t wp_bearing() const override;
private:
void wait_cleanup_run();
void path_follow_run();
void pre_land_position_run();
void land();
SmartRTLState smart_rtl_state = SmartRTL_PathFollow;
};
class ModeSport : public Mode {
public:
// inherit constructor
using Copter::Mode::Mode;
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return false; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return true; };
bool is_autopilot() const override { return false; }
protected:
const char *name() const override { return "SPORT"; }
const char *name4() const override { return "SPRT"; }
private:
};
class ModeStabilize : public Mode {
public:
// inherit constructor
using Copter::Mode::Mode;
virtual bool init(bool ignore_checks) override;
virtual void run() override;
bool requires_GPS() const override { return false; }
bool has_manual_throttle() const override { return true; }
bool allows_arming(bool from_gcs) const override { return true; };
bool is_autopilot() const override { return false; }
protected:
const char *name() const override { return "STABILIZE"; }
const char *name4() const override { return "STAB"; }
private:
};
#if FRAME_CONFIG == HELI_FRAME
class ModeStabilize_Heli : public ModeStabilize {
public:
// inherit constructor
using Copter::ModeStabilize::Mode;
bool init(bool ignore_checks) override;
void run() override;
protected:
private:
};
#endif
class ModeThrow : public Mode {
public:
// inherit constructor
using Copter::Mode::Mode;
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return true; };
bool is_autopilot() const override { return false; }
protected:
const char *name() const override { return "THROW"; }
const char *name4() const override { return "THRW"; }
private:
bool throw_detected();
bool throw_position_good();
bool throw_height_good();
bool throw_attitude_good();
ThrowModeStage stage = Throw_Disarmed;
ThrowModeStage prev_stage = Throw_Disarmed;
uint32_t last_log_ms;
bool nextmode_attempted;
uint32_t free_fall_start_ms; // system time free fall was detected
float free_fall_start_velz; // vertical velocity when free fall was detected
};
class ModeAvoidADSB : public ModeGuided {
public:
// inherit constructor
using Copter::ModeGuided::Mode;
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(bool from_gcs) const override { return false; }
bool is_autopilot() const override { return true; }
bool set_velocity(const Vector3f& velocity_neu);
protected:
const char *name() const override { return "AVOID_ADSB"; }
const char *name4() const override { return "AVOI"; }
private:
};