ardupilot/ArduCopter/GCS_Mavlink.cpp
2018-02-13 08:52:48 +09:00

1873 lines
63 KiB
C++

#include "Copter.h"
#include "GCS_Mavlink.h"
void Copter::gcs_send_heartbeat(void)
{
gcs().send_message(MSG_HEARTBEAT);
}
void Copter::gcs_send_deferred(void)
{
gcs().retry_deferred();
}
/*
* !!NOTE!!
*
* the use of NOINLINE separate functions for each message type avoids
* a compiler bug in gcc that would cause it to use far more stack
* space than is needed. Without the NOINLINE we use the sum of the
* stack needed for each message type. Please be careful to follow the
* pattern below when adding any new messages
*/
NOINLINE void Copter::send_heartbeat(mavlink_channel_t chan)
{
uint8_t base_mode = MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
uint8_t system_status = ap.land_complete ? MAV_STATE_STANDBY : MAV_STATE_ACTIVE;
uint32_t custom_mode = control_mode;
// set system as critical if any failsafe have triggered
if (failsafe.radio || failsafe.battery || failsafe.gcs || failsafe.ekf || failsafe.terrain || failsafe.adsb) {
system_status = MAV_STATE_CRITICAL;
}
// work out the base_mode. This value is not very useful
// for APM, but we calculate it as best we can so a generic
// MAVLink enabled ground station can work out something about
// what the MAV is up to. The actual bit values are highly
// ambiguous for most of the APM flight modes. In practice, you
// only get useful information from the custom_mode, which maps to
// the APM flight mode and has a well defined meaning in the
// ArduPlane documentation
base_mode = MAV_MODE_FLAG_STABILIZE_ENABLED;
switch (control_mode) {
case AUTO:
case RTL:
case LOITER:
case AVOID_ADSB:
case GUIDED:
case CIRCLE:
case POSHOLD:
case BRAKE:
case SMART_RTL:
base_mode |= MAV_MODE_FLAG_GUIDED_ENABLED;
// note that MAV_MODE_FLAG_AUTO_ENABLED does not match what
// APM does in any mode, as that is defined as "system finds its own goal
// positions", which APM does not currently do
break;
default:
break;
}
// all modes except INITIALISING have some form of manual
// override if stick mixing is enabled
base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
#if HIL_MODE != HIL_MODE_DISABLED
base_mode |= MAV_MODE_FLAG_HIL_ENABLED;
#endif
// we are armed if we are not initialising
if (motors != nullptr && motors->armed()) {
base_mode |= MAV_MODE_FLAG_SAFETY_ARMED;
}
// indicate we have set a custom mode
base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
gcs().chan(chan-MAVLINK_COMM_0).send_heartbeat(get_frame_mav_type(),
base_mode,
custom_mode,
system_status);
}
NOINLINE void Copter::send_attitude(mavlink_channel_t chan)
{
const Vector3f &gyro = ins.get_gyro();
mavlink_msg_attitude_send(
chan,
millis(),
ahrs.roll,
ahrs.pitch,
ahrs.yaw,
gyro.x,
gyro.y,
gyro.z);
}
#if AC_FENCE == ENABLED
NOINLINE void Copter::send_fence_status(mavlink_channel_t chan)
{
fence_send_mavlink_status(chan);
}
#endif
NOINLINE void Copter::send_extended_status1(mavlink_channel_t chan)
{
int16_t battery_current = -1;
int8_t battery_remaining = -1;
if (battery.has_current() && battery.healthy()) {
battery_remaining = battery.capacity_remaining_pct();
battery_current = battery.current_amps() * 100;
}
update_sensor_status_flags();
mavlink_msg_sys_status_send(
chan,
control_sensors_present,
control_sensors_enabled,
control_sensors_health,
(uint16_t)(scheduler.load_average() * 1000),
battery.voltage() * 1000, // mV
battery_current, // in 10mA units
battery_remaining, // in %
0, // comm drops %,
0, // comm drops in pkts,
0, 0, 0, 0);
}
void NOINLINE Copter::send_location(mavlink_channel_t chan)
{
const uint32_t now = AP_HAL::millis();
Vector3f vel;
ahrs.get_velocity_NED(vel);
mavlink_msg_global_position_int_send(
chan,
now,
current_loc.lat, // in 1E7 degrees
current_loc.lng, // in 1E7 degrees
(ahrs.get_home().alt + current_loc.alt) * 10UL, // millimeters above sea level
current_loc.alt * 10, // millimeters above ground
vel.x * 100, // X speed cm/s (+ve North)
vel.y * 100, // Y speed cm/s (+ve East)
vel.z * 100, // Z speed cm/s (+ve Down)
ahrs.yaw_sensor); // compass heading in 1/100 degree
}
void NOINLINE Copter::send_nav_controller_output(mavlink_channel_t chan)
{
const Vector3f &targets = attitude_control->get_att_target_euler_cd();
mavlink_msg_nav_controller_output_send(
chan,
targets.x * 1.0e-2f,
targets.y * 1.0e-2f,
targets.z * 1.0e-2f,
flightmode->wp_bearing() * 1.0e-2f,
MIN(flightmode->wp_distance() * 1.0e-2f, UINT16_MAX),
pos_control->get_alt_error() * 1.0e-2f,
0,
0);
}
// report simulator state
void NOINLINE Copter::send_simstate(mavlink_channel_t chan)
{
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
sitl.simstate_send(chan);
#endif
}
void NOINLINE Copter::send_vfr_hud(mavlink_channel_t chan)
{
mavlink_msg_vfr_hud_send(
chan,
gps.ground_speed(),
ahrs.groundspeed(),
(ahrs.yaw_sensor / 100) % 360,
(int16_t)(motors->get_throttle() * 100),
current_loc.alt / 100.0f,
climb_rate / 100.0f);
}
/*
send RPM packet
*/
void NOINLINE Copter::send_rpm(mavlink_channel_t chan)
{
if (rpm_sensor.enabled(0) || rpm_sensor.enabled(1)) {
mavlink_msg_rpm_send(
chan,
rpm_sensor.get_rpm(0),
rpm_sensor.get_rpm(1));
}
}
/*
send PID tuning message
*/
void Copter::send_pid_tuning(mavlink_channel_t chan)
{
const Vector3f &gyro = ahrs.get_gyro();
if (g.gcs_pid_mask & 1) {
const DataFlash_Class::PID_Info &pid_info = attitude_control->get_rate_roll_pid().get_pid_info();
mavlink_msg_pid_tuning_send(chan, PID_TUNING_ROLL,
pid_info.desired*0.01f,
degrees(gyro.x),
pid_info.FF*0.01f,
pid_info.P*0.01f,
pid_info.I*0.01f,
pid_info.D*0.01f);
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
if (g.gcs_pid_mask & 2) {
const DataFlash_Class::PID_Info &pid_info = attitude_control->get_rate_pitch_pid().get_pid_info();
mavlink_msg_pid_tuning_send(chan, PID_TUNING_PITCH,
pid_info.desired*0.01f,
degrees(gyro.y),
pid_info.FF*0.01f,
pid_info.P*0.01f,
pid_info.I*0.01f,
pid_info.D*0.01f);
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
if (g.gcs_pid_mask & 4) {
const DataFlash_Class::PID_Info &pid_info = attitude_control->get_rate_yaw_pid().get_pid_info();
mavlink_msg_pid_tuning_send(chan, PID_TUNING_YAW,
pid_info.desired*0.01f,
degrees(gyro.z),
pid_info.FF*0.01f,
pid_info.P*0.01f,
pid_info.I*0.01f,
pid_info.D*0.01f);
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
if (g.gcs_pid_mask & 8) {
const DataFlash_Class::PID_Info &pid_info = copter.pos_control->get_accel_z_pid().get_pid_info();
mavlink_msg_pid_tuning_send(chan, PID_TUNING_ACCZ,
pid_info.desired*0.01f,
-(ahrs.get_accel_ef_blended().z + GRAVITY_MSS),
pid_info.FF*0.01f,
pid_info.P*0.01f,
pid_info.I*0.01f,
pid_info.D*0.01f);
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
}
uint8_t GCS_MAVLINK_Copter::sysid_my_gcs() const
{
return copter.g.sysid_my_gcs;
}
uint32_t GCS_MAVLINK_Copter::telem_delay() const
{
return (uint32_t)(copter.g.telem_delay);
}
// try to send a message, return false if it wasn't sent
bool GCS_MAVLINK_Copter::try_send_message(enum ap_message id)
{
if (telemetry_delayed()) {
return false;
}
#if HIL_MODE != HIL_MODE_SENSORS
// if we don't have at least 250 micros remaining before the main loop
// wants to fire then don't send a mavlink message. We want to
// prioritise the main flight control loop over communications
// the check for nullptr here doesn't just save a nullptr
// dereference; it means that we send messages out even if we're
// failing to detect a PX4 board type (see delay(3000) in px_drivers).
if (copter.motors != nullptr && copter.scheduler.time_available_usec() < 250 && copter.motors->armed()) {
gcs().set_out_of_time(true);
return false;
}
#endif
switch(id) {
case MSG_HEARTBEAT:
CHECK_PAYLOAD_SIZE(HEARTBEAT);
last_heartbeat_time = AP_HAL::millis();
copter.send_heartbeat(chan);
break;
case MSG_EXTENDED_STATUS1:
// send extended status only once vehicle has been initialised
// to avoid unnecessary errors being reported to user
if (copter.ap.initialised) {
CHECK_PAYLOAD_SIZE(SYS_STATUS);
copter.send_extended_status1(chan);
CHECK_PAYLOAD_SIZE(POWER_STATUS);
send_power_status();
}
break;
case MSG_ATTITUDE:
CHECK_PAYLOAD_SIZE(ATTITUDE);
copter.send_attitude(chan);
break;
case MSG_LOCATION:
CHECK_PAYLOAD_SIZE(GLOBAL_POSITION_INT);
copter.send_location(chan);
break;
case MSG_LOCAL_POSITION:
CHECK_PAYLOAD_SIZE(LOCAL_POSITION_NED);
send_local_position(copter.ahrs);
break;
case MSG_NAV_CONTROLLER_OUTPUT:
CHECK_PAYLOAD_SIZE(NAV_CONTROLLER_OUTPUT);
copter.send_nav_controller_output(chan);
break;
case MSG_RADIO_IN:
CHECK_PAYLOAD_SIZE(RC_CHANNELS);
send_radio_in(copter.receiver_rssi);
break;
case MSG_SERVO_OUTPUT_RAW:
CHECK_PAYLOAD_SIZE(SERVO_OUTPUT_RAW);
send_servo_output_raw(false);
break;
case MSG_VFR_HUD:
CHECK_PAYLOAD_SIZE(VFR_HUD);
copter.send_vfr_hud(chan);
break;
case MSG_RAW_IMU1:
CHECK_PAYLOAD_SIZE(RAW_IMU);
send_raw_imu(copter.ins, copter.compass);
break;
case MSG_RAW_IMU2:
CHECK_PAYLOAD_SIZE(SCALED_PRESSURE);
send_scaled_pressure(copter.barometer);
break;
case MSG_RAW_IMU3:
CHECK_PAYLOAD_SIZE(SENSOR_OFFSETS);
send_sensor_offsets(copter.ins, copter.compass, copter.barometer);
break;
case MSG_RANGEFINDER:
#if RANGEFINDER_ENABLED == ENABLED
CHECK_PAYLOAD_SIZE(RANGEFINDER);
send_rangefinder_downward(copter.rangefinder);
CHECK_PAYLOAD_SIZE(DISTANCE_SENSOR);
send_distance_sensor_downward(copter.rangefinder);
#endif
#if PROXIMITY_ENABLED == ENABLED
send_proximity(copter.g2.proximity);
#endif
break;
case MSG_RPM:
CHECK_PAYLOAD_SIZE(RPM);
copter.send_rpm(chan);
break;
case MSG_TERRAIN:
#if AP_TERRAIN_AVAILABLE && AC_TERRAIN
CHECK_PAYLOAD_SIZE(TERRAIN_REQUEST);
copter.terrain.send_request(chan);
#endif
break;
case MSG_FENCE_STATUS:
#if AC_FENCE == ENABLED
CHECK_PAYLOAD_SIZE(FENCE_STATUS);
copter.send_fence_status(chan);
#endif
break;
case MSG_AHRS:
CHECK_PAYLOAD_SIZE(AHRS);
send_ahrs(copter.ahrs);
break;
case MSG_SIMSTATE:
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
CHECK_PAYLOAD_SIZE(SIMSTATE);
copter.send_simstate(chan);
#endif
CHECK_PAYLOAD_SIZE(AHRS2);
send_ahrs2(copter.ahrs);
break;
case MSG_MOUNT_STATUS:
#if MOUNT == ENABLED
CHECK_PAYLOAD_SIZE(MOUNT_STATUS);
copter.camera_mount.status_msg(chan);
#endif // MOUNT == ENABLED
break;
case MSG_BATTERY2:
CHECK_PAYLOAD_SIZE(BATTERY2);
send_battery2(copter.battery);
break;
case MSG_OPTICAL_FLOW:
#if OPTFLOW == ENABLED
CHECK_PAYLOAD_SIZE(OPTICAL_FLOW);
send_opticalflow(copter.ahrs, copter.optflow);
#endif
break;
case MSG_GIMBAL_REPORT:
#if MOUNT == ENABLED
CHECK_PAYLOAD_SIZE(GIMBAL_REPORT);
copter.camera_mount.send_gimbal_report(chan);
#endif
break;
case MSG_EKF_STATUS_REPORT:
CHECK_PAYLOAD_SIZE(EKF_STATUS_REPORT);
copter.ahrs.send_ekf_status_report(chan);
break;
case MSG_LIMITS_STATUS:
case MSG_WIND:
case MSG_POSITION_TARGET_GLOBAL_INT:
case MSG_SERVO_OUT:
case MSG_AOA_SSA:
case MSG_LANDING:
// unused
break;
case MSG_PID_TUNING:
CHECK_PAYLOAD_SIZE(PID_TUNING);
copter.send_pid_tuning(chan);
break;
case MSG_VIBRATION:
CHECK_PAYLOAD_SIZE(VIBRATION);
send_vibration(copter.ins);
break;
case MSG_ADSB_VEHICLE:
CHECK_PAYLOAD_SIZE(ADSB_VEHICLE);
copter.adsb.send_adsb_vehicle(chan);
break;
case MSG_BATTERY_STATUS:
send_battery_status(copter.battery);
break;
default:
return GCS_MAVLINK::try_send_message(id);
}
return true;
}
const AP_Param::GroupInfo GCS_MAVLINK::var_info[] = {
// @Param: RAW_SENS
// @DisplayName: Raw sensor stream rate
// @Description: Stream rate of RAW_IMU, SCALED_IMU2, SCALED_IMU3, SCALED_PRESSURE, SCALED_PRESSURE2, SCALED_PRESSURE3 and SENSOR_OFFSETS to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK, streamRates[0], 0),
// @Param: EXT_STAT
// @DisplayName: Extended status stream rate to ground station
// @Description: Stream rate of SYS_STATUS, POWER_STATUS, MEMINFO, CURRENT_WAYPOINT, GPS_RAW_INT, GPS_RTK (if available), GPS2_RAW (if available), GPS2_RTK (if available), NAV_CONTROLLER_OUTPUT, and FENCE_STATUS to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK, streamRates[1], 0),
// @Param: RC_CHAN
// @DisplayName: RC Channel stream rate to ground station
// @Description: Stream rate of SERVO_OUTPUT_RAW and RC_CHANNELS to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK, streamRates[2], 0),
// @Param: RAW_CTRL
// @DisplayName: Raw Control stream rate to ground station
// @Description: Stream rate of RC_CHANNELS_SCALED (HIL only) to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK, streamRates[3], 0),
// @Param: POSITION
// @DisplayName: Position stream rate to ground station
// @Description: Stream rate of GLOBAL_POSITION_INT and LOCAL_POSITION_NED to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("POSITION", 4, GCS_MAVLINK, streamRates[4], 0),
// @Param: EXTRA1
// @DisplayName: Extra data type 1 stream rate to ground station
// @Description: Stream rate of ATTITUDE, SIMSTATE (SITL only), AHRS2 and PID_TUNING to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK, streamRates[5], 0),
// @Param: EXTRA2
// @DisplayName: Extra data type 2 stream rate to ground station
// @Description: Stream rate of VFR_HUD to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK, streamRates[6], 0),
// @Param: EXTRA3
// @DisplayName: Extra data type 3 stream rate to ground station
// @Description: Stream rate of AHRS, HWSTATUS, SYSTEM_TIME, RANGEFINDER, DISTANCE_SENSOR, TERRAIN_REQUEST, BATTERY2, MOUNT_STATUS, OPTICAL_FLOW, GIMBAL_REPORT, MAG_CAL_REPORT, MAG_CAL_PROGRESS, EKF_STATUS_REPORT, VIBRATION and RPM to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK, streamRates[7], 0),
// @Param: PARAMS
// @DisplayName: Parameter stream rate to ground station
// @Description: Stream rate of PARAM_VALUE to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK, streamRates[8], 0),
// @Param: ADSB
// @DisplayName: ADSB stream rate to ground station
// @Description: ADSB stream rate to ground station
// @Units: Hz
// @Range: 0 50
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("ADSB", 9, GCS_MAVLINK, streamRates[9], 5),
AP_GROUPEND
};
void
GCS_MAVLINK_Copter::data_stream_send(void)
{
if (waypoint_receiving) {
// don't interfere with mission transfer
return;
}
if (!copter.in_mavlink_delay && !copter.motors->armed()) {
copter.DataFlash.handle_log_send(*this);
}
gcs().set_out_of_time(false);
send_queued_parameters();
if (gcs().out_of_time()) return;
if (copter.in_mavlink_delay) {
// don't send any other stream types while in the delay callback
return;
}
if (stream_trigger(STREAM_RAW_SENSORS)) {
send_message(MSG_RAW_IMU1); // RAW_IMU, SCALED_IMU2, SCALED_IMU3
send_message(MSG_RAW_IMU2); // SCALED_PRESSURE, SCALED_PRESSURE2, SCALED_PRESSURE3
send_message(MSG_RAW_IMU3); // SENSOR_OFFSETS
}
if (gcs().out_of_time()) return;
if (stream_trigger(STREAM_EXTENDED_STATUS)) {
send_message(MSG_EXTENDED_STATUS1); // SYS_STATUS, POWER_STATUS
send_message(MSG_EXTENDED_STATUS2); // MEMINFO
send_message(MSG_CURRENT_WAYPOINT);
send_message(MSG_GPS_RAW);
send_message(MSG_GPS_RTK);
send_message(MSG_GPS2_RAW);
send_message(MSG_GPS2_RTK);
send_message(MSG_NAV_CONTROLLER_OUTPUT);
send_message(MSG_FENCE_STATUS);
}
if (gcs().out_of_time()) return;
if (stream_trigger(STREAM_POSITION)) {
send_message(MSG_LOCATION);
send_message(MSG_LOCAL_POSITION);
}
if (gcs().out_of_time()) return;
if (stream_trigger(STREAM_RAW_CONTROLLER)) {
}
if (gcs().out_of_time()) return;
if (stream_trigger(STREAM_RC_CHANNELS)) {
send_message(MSG_SERVO_OUTPUT_RAW);
send_message(MSG_RADIO_IN);
}
if (gcs().out_of_time()) return;
if (stream_trigger(STREAM_EXTRA1)) {
send_message(MSG_ATTITUDE);
send_message(MSG_SIMSTATE); // SIMSTATE, AHRS2
send_message(MSG_PID_TUNING);
}
if (gcs().out_of_time()) return;
if (stream_trigger(STREAM_EXTRA2)) {
send_message(MSG_VFR_HUD);
}
if (gcs().out_of_time()) return;
if (stream_trigger(STREAM_EXTRA3)) {
send_message(MSG_AHRS);
send_message(MSG_HWSTATUS);
send_message(MSG_SYSTEM_TIME);
send_message(MSG_RANGEFINDER);
#if AP_TERRAIN_AVAILABLE && AC_TERRAIN
send_message(MSG_TERRAIN);
#endif
send_message(MSG_BATTERY2);
send_message(MSG_BATTERY_STATUS);
send_message(MSG_MOUNT_STATUS);
send_message(MSG_OPTICAL_FLOW);
send_message(MSG_GIMBAL_REPORT);
send_message(MSG_MAG_CAL_REPORT);
send_message(MSG_MAG_CAL_PROGRESS);
send_message(MSG_EKF_STATUS_REPORT);
send_message(MSG_VIBRATION);
send_message(MSG_RPM);
}
if (gcs().out_of_time()) return;
if (stream_trigger(STREAM_ADSB)) {
send_message(MSG_ADSB_VEHICLE);
}
}
bool GCS_MAVLINK_Copter::handle_guided_request(AP_Mission::Mission_Command &cmd)
{
return copter.mode_auto.do_guided(cmd);
}
void GCS_MAVLINK_Copter::handle_change_alt_request(AP_Mission::Mission_Command &cmd)
{
// add home alt if needed
if (cmd.content.location.flags.relative_alt) {
cmd.content.location.alt += copter.ahrs.get_home().alt;
}
// To-Do: update target altitude for loiter or waypoint controller depending upon nav mode
}
void GCS_MAVLINK_Copter::packetReceived(const mavlink_status_t &status,
mavlink_message_t &msg)
{
if (copter.g2.dev_options.get() & DevOptionADSBMAVLink) {
// optional handling of GLOBAL_POSITION_INT as a MAVLink based avoidance source
copter.avoidance_adsb.handle_msg(msg);
}
GCS_MAVLINK::packetReceived(status, msg);
}
bool GCS_MAVLINK_Copter::params_ready() const
{
if (AP_BoardConfig::in_sensor_config_error()) {
// we may never have parameters "initialised" in this case
return true;
}
// if we have not yet initialised (including allocating the motors
// object) we drop this request. That prevents the GCS from getting
// a confusing parameter count during bootup
return copter.ap.initialised_params;
}
void GCS_MAVLINK_Copter::send_banner()
{
GCS_MAVLINK::send_banner();
send_text(MAV_SEVERITY_INFO, "Frame: %s", copter.get_frame_string());
}
void GCS_MAVLINK_Copter::handleMessage(mavlink_message_t* msg)
{
MAV_RESULT result = MAV_RESULT_FAILED; // assume failure. Each messages id is responsible for return ACK or NAK if required
switch (msg->msgid) {
case MAVLINK_MSG_ID_HEARTBEAT: // MAV ID: 0
{
// We keep track of the last time we received a heartbeat from our GCS for failsafe purposes
if(msg->sysid != copter.g.sysid_my_gcs) break;
copter.failsafe.last_heartbeat_ms = AP_HAL::millis();
copter.pmTest1++;
break;
}
case MAVLINK_MSG_ID_PARAM_VALUE:
{
#if MOUNT == ENABLED
copter.camera_mount.handle_param_value(msg);
#endif
break;
}
case MAVLINK_MSG_ID_REQUEST_DATA_STREAM: // MAV ID: 66
{
handle_request_data_stream(msg, false);
break;
}
case MAVLINK_MSG_ID_GIMBAL_REPORT:
{
#if MOUNT == ENABLED
handle_gimbal_report(copter.camera_mount, msg);
#endif
break;
}
case MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE: // MAV ID: 70
{
// allow override of RC channel values for HIL
// or for complete GCS control of switch position
// and RC PWM values.
if(msg->sysid != copter.g.sysid_my_gcs) break; // Only accept control from our gcs
if (!copter.ap.rc_override_enable) {
if (copter.failsafe.rc_override_active) { // if overrides were active previously, disable them
copter.failsafe.rc_override_active = false;
hal.rcin->clear_overrides();
}
break;
}
mavlink_rc_channels_override_t packet;
int16_t v[8];
mavlink_msg_rc_channels_override_decode(msg, &packet);
v[0] = packet.chan1_raw;
v[1] = packet.chan2_raw;
v[2] = packet.chan3_raw;
v[3] = packet.chan4_raw;
v[4] = packet.chan5_raw;
v[5] = packet.chan6_raw;
v[6] = packet.chan7_raw;
v[7] = packet.chan8_raw;
// record that rc are overwritten so we can trigger a failsafe if we lose contact with groundstation
copter.failsafe.rc_override_active = hal.rcin->set_overrides(v, 8);
// a RC override message is considered to be a 'heartbeat' from the ground station for failsafe purposes
copter.failsafe.last_heartbeat_ms = AP_HAL::millis();
break;
}
case MAVLINK_MSG_ID_MANUAL_CONTROL:
{
if(msg->sysid != copter.g.sysid_my_gcs) break; // Only accept control from our gcs
mavlink_manual_control_t packet;
mavlink_msg_manual_control_decode(msg, &packet);
if (packet.z < 0) { // Copter doesn't do negative thrust
break;
}
bool override_active = false;
int16_t roll = (packet.y == INT16_MAX) ? 0 : copter.channel_roll->get_radio_min() + (copter.channel_roll->get_radio_max() - copter.channel_roll->get_radio_min()) * (packet.y + 1000) / 2000.0f;
int16_t pitch = (packet.x == INT16_MAX) ? 0 : copter.channel_pitch->get_radio_min() + (copter.channel_pitch->get_radio_max() - copter.channel_pitch->get_radio_min()) * (-packet.x + 1000) / 2000.0f;
int16_t throttle = (packet.z == INT16_MAX) ? 0 : copter.channel_throttle->get_radio_min() + (copter.channel_throttle->get_radio_max() - copter.channel_throttle->get_radio_min()) * (packet.z) / 1000.0f;
int16_t yaw = (packet.r == INT16_MAX) ? 0 : copter.channel_yaw->get_radio_min() + (copter.channel_yaw->get_radio_max() - copter.channel_yaw->get_radio_min()) * (packet.r + 1000) / 2000.0f;
override_active |= hal.rcin->set_override(uint8_t(copter.rcmap.roll() - 1), roll);
override_active |= hal.rcin->set_override(uint8_t(copter.rcmap.pitch() - 1), pitch);
override_active |= hal.rcin->set_override(uint8_t(copter.rcmap.throttle() - 1), throttle);
override_active |= hal.rcin->set_override(uint8_t(copter.rcmap.yaw() - 1), yaw);
// record that rc are overwritten so we can trigger a failsafe if we lose contact with groundstation
copter.failsafe.rc_override_active = override_active;
// a manual control message is considered to be a 'heartbeat' from the ground station for failsafe purposes
copter.failsafe.last_heartbeat_ms = AP_HAL::millis();
break;
}
case MAVLINK_MSG_ID_COMMAND_INT:
{
// decode packet
mavlink_command_int_t packet;
mavlink_msg_command_int_decode(msg, &packet);
switch(packet.command)
{
case MAV_CMD_DO_SET_HOME: {
// assume failure
result = MAV_RESULT_FAILED;
if (is_equal(packet.param1, 1.0f)) {
// if param1 is 1, use current location
if (copter.set_home_to_current_location(true)) {
result = MAV_RESULT_ACCEPTED;
}
break;
}
// ensure param1 is zero
if (!is_zero(packet.param1)) {
break;
}
// check frame type is supported
if (packet.frame != MAV_FRAME_GLOBAL &&
packet.frame != MAV_FRAME_GLOBAL_INT &&
packet.frame != MAV_FRAME_GLOBAL_RELATIVE_ALT &&
packet.frame != MAV_FRAME_GLOBAL_RELATIVE_ALT_INT) {
break;
}
// sanity check location
if (!check_latlng(packet.x, packet.y)) {
break;
}
Location new_home_loc {};
new_home_loc.lat = packet.x;
new_home_loc.lng = packet.y;
new_home_loc.alt = packet.z * 100;
// handle relative altitude
if (packet.frame == MAV_FRAME_GLOBAL_RELATIVE_ALT || packet.frame == MAV_FRAME_GLOBAL_RELATIVE_ALT_INT) {
if (copter.ap.home_state == HOME_UNSET) {
// cannot use relative altitude if home is not set
break;
}
new_home_loc.alt += copter.ahrs.get_home().alt;
}
if (copter.set_home(new_home_loc, true)) {
result = MAV_RESULT_ACCEPTED;
}
break;
}
case MAV_CMD_DO_SET_ROI: {
// param1 : /* Region of interest mode (not used)*/
// param2 : /* MISSION index/ target ID (not used)*/
// param3 : /* ROI index (not used)*/
// param4 : /* empty */
// x : lat
// y : lon
// z : alt
// sanity check location
if (!check_latlng(packet.x, packet.y)) {
break;
}
Location roi_loc;
roi_loc.lat = packet.x;
roi_loc.lng = packet.y;
roi_loc.alt = (int32_t)(packet.z * 100.0f);
copter.set_auto_yaw_roi(roi_loc);
result = MAV_RESULT_ACCEPTED;
break;
}
default:
result = MAV_RESULT_UNSUPPORTED;
break;
}
// send ACK or NAK
mavlink_msg_command_ack_send_buf(msg, chan, packet.command, result);
break;
}
// Pre-Flight calibration requests
case MAVLINK_MSG_ID_COMMAND_LONG: // MAV ID: 76
{
// decode packet
mavlink_command_long_t packet;
mavlink_msg_command_long_decode(msg, &packet);
switch(packet.command) {
case MAV_CMD_NAV_TAKEOFF: {
// param3 : horizontal navigation by pilot acceptable
// param4 : yaw angle (not supported)
// param5 : latitude (not supported)
// param6 : longitude (not supported)
// param7 : altitude [metres]
float takeoff_alt = packet.param7 * 100; // Convert m to cm
if(copter.do_user_takeoff(takeoff_alt, is_zero(packet.param3))) {
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_FAILED;
}
break;
}
case MAV_CMD_NAV_LOITER_UNLIM:
if (copter.set_mode(LOITER, MODE_REASON_GCS_COMMAND)) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_NAV_RETURN_TO_LAUNCH:
if (copter.set_mode(RTL, MODE_REASON_GCS_COMMAND)) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_NAV_LAND:
if (copter.set_mode(LAND, MODE_REASON_GCS_COMMAND)) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_CONDITION_YAW:
// param1 : target angle [0-360]
// param2 : speed during change [deg per second]
// param3 : direction (-1:ccw, +1:cw)
// param4 : relative offset (1) or absolute angle (0)
if ((packet.param1 >= 0.0f) &&
(packet.param1 <= 360.0f) &&
(is_zero(packet.param4) || is_equal(packet.param4,1.0f))) {
copter.set_auto_yaw_look_at_heading(packet.param1, packet.param2, (int8_t)packet.param3, is_positive(packet.param4));
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_FAILED;
}
break;
case MAV_CMD_DO_CHANGE_SPEED:
// param1 : unused
// param2 : new speed in m/s
// param3 : unused
// param4 : unused
if (packet.param2 > 0.0f) {
copter.wp_nav->set_speed_xy(packet.param2 * 100.0f);
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_FAILED;
}
break;
case MAV_CMD_DO_SET_HOME:
// param1 : use current (1=use current location, 0=use specified location)
// param5 : latitude
// param6 : longitude
// param7 : altitude (absolute)
result = MAV_RESULT_FAILED; // assume failure
if (is_equal(packet.param1,1.0f)) {
if (copter.set_home_to_current_location(true)) {
result = MAV_RESULT_ACCEPTED;
}
} else {
// ensure param1 is zero
if (!is_zero(packet.param1)) {
break;
}
// sanity check location
if (!check_latlng(packet.param5, packet.param6)) {
break;
}
Location new_home_loc;
new_home_loc.lat = (int32_t)(packet.param5 * 1.0e7f);
new_home_loc.lng = (int32_t)(packet.param6 * 1.0e7f);
new_home_loc.alt = (int32_t)(packet.param7 * 100.0f);
if (copter.set_home(new_home_loc, true)) {
result = MAV_RESULT_ACCEPTED;
}
}
break;
case MAV_CMD_DO_SET_ROI:
// param1 : regional of interest mode (not supported)
// param2 : mission index/ target id (not supported)
// param3 : ROI index (not supported)
// param5 : x / lat
// param6 : y / lon
// param7 : z / alt
// sanity check location
if (!check_latlng(packet.param5, packet.param6)) {
break;
}
Location roi_loc;
roi_loc.lat = (int32_t)(packet.param5 * 1.0e7f);
roi_loc.lng = (int32_t)(packet.param6 * 1.0e7f);
roi_loc.alt = (int32_t)(packet.param7 * 100.0f);
copter.set_auto_yaw_roi(roi_loc);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_DO_MOUNT_CONTROL:
#if MOUNT == ENABLED
if(!copter.camera_mount.has_pan_control()) {
copter.set_auto_yaw_look_at_heading((float)packet.param3 / 100.0f,0.0f,0,0);
}
copter.camera_mount.control(packet.param1, packet.param2, packet.param3, (MAV_MOUNT_MODE) packet.param7);
result = MAV_RESULT_ACCEPTED;
#endif
break;
case MAV_CMD_MISSION_START:
if (copter.motors->armed() && copter.set_mode(AUTO, MODE_REASON_GCS_COMMAND)) {
copter.set_auto_armed(true);
if (copter.mission.state() != AP_Mission::MISSION_RUNNING) {
copter.mission.start_or_resume();
}
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_PREFLIGHT_CALIBRATION:
// exit immediately if armed
if (copter.motors->armed()) {
result = MAV_RESULT_FAILED;
break;
}
if (is_equal(packet.param1,1.0f)) {
if (copter.calibrate_gyros()) {
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_FAILED;
}
} else if (is_equal(packet.param3,1.0f)) {
// fast barometer calibration
copter.init_barometer(false);
result = MAV_RESULT_ACCEPTED;
} else if (is_equal(packet.param4,1.0f)) {
result = MAV_RESULT_UNSUPPORTED;
} else if (is_equal(packet.param5,1.0f)) {
// 3d accel calibration
result = MAV_RESULT_ACCEPTED;
if (!copter.calibrate_gyros()) {
result = MAV_RESULT_FAILED;
break;
}
copter.ins.acal_init();
copter.ins.get_acal()->start(this);
} else if (is_equal(packet.param5,2.0f)) {
// calibrate gyros
if (!copter.calibrate_gyros()) {
result = MAV_RESULT_FAILED;
break;
}
// accel trim
float trim_roll, trim_pitch;
if(copter.ins.calibrate_trim(trim_roll, trim_pitch)) {
// reset ahrs's trim to suggested values from calibration routine
copter.ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0));
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_FAILED;
}
} else if (is_equal(packet.param5,4.0f)) {
// simple accel calibration
result = copter.ins.simple_accel_cal(copter.ahrs);
} else if (is_equal(packet.param6,1.0f)) {
// compassmot calibration
result = copter.mavlink_compassmot(chan);
}
break;
case MAV_CMD_COMPONENT_ARM_DISARM:
if (is_equal(packet.param1,1.0f)) {
// attempt to arm and return success or failure
if (copter.init_arm_motors(true)) {
result = MAV_RESULT_ACCEPTED;
}
} else if (is_zero(packet.param1) && (copter.ap.land_complete || is_equal(packet.param2,21196.0f))) {
// force disarming by setting param2 = 21196 is deprecated
copter.init_disarm_motors();
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_UNSUPPORTED;
}
break;
case MAV_CMD_GET_HOME_POSITION:
if (copter.ap.home_state != HOME_UNSET) {
send_home(copter.ahrs.get_home());
Location ekf_origin;
if (copter.ahrs.get_origin(ekf_origin)) {
send_ekf_origin(ekf_origin);
}
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_FAILED;
}
break;
case MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN:
if (is_equal(packet.param1,1.0f) || is_equal(packet.param1,3.0f)) {
AP_Notify::flags.firmware_update = 1;
copter.notify.update();
hal.scheduler->delay(200);
// when packet.param1 == 3 we reboot to hold in bootloader
hal.scheduler->reboot(is_equal(packet.param1,3.0f));
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_DO_FENCE_ENABLE:
#if AC_FENCE == ENABLED
result = MAV_RESULT_ACCEPTED;
switch ((uint16_t)packet.param1) {
case 0:
copter.fence.enable(false);
break;
case 1:
copter.fence.enable(true);
break;
default:
result = MAV_RESULT_FAILED;
break;
}
#else
// if fence code is not included return failure
result = MAV_RESULT_FAILED;
#endif
break;
#if PARACHUTE == ENABLED
case MAV_CMD_DO_PARACHUTE:
// configure or release parachute
result = MAV_RESULT_ACCEPTED;
switch ((uint16_t)packet.param1) {
case PARACHUTE_DISABLE:
copter.parachute.enabled(false);
copter.Log_Write_Event(DATA_PARACHUTE_DISABLED);
break;
case PARACHUTE_ENABLE:
copter.parachute.enabled(true);
copter.Log_Write_Event(DATA_PARACHUTE_ENABLED);
break;
case PARACHUTE_RELEASE:
// treat as a manual release which performs some additional check of altitude
copter.parachute_manual_release();
break;
default:
result = MAV_RESULT_FAILED;
break;
}
break;
#endif
case MAV_CMD_DO_MOTOR_TEST:
// param1 : motor sequence number (a number from 1 to max number of motors on the vehicle)
// param2 : throttle type (0=throttle percentage, 1=PWM, 2=pilot throttle channel pass-through. See MOTOR_TEST_THROTTLE_TYPE enum)
// param3 : throttle (range depends upon param2)
// param4 : timeout (in seconds)
// param5 : num_motors (in sequence)
// param6 : compass learning (0: disabled, 1: enabled)
result = copter.mavlink_motor_test_start(chan, (uint8_t)packet.param1, (uint8_t)packet.param2, (uint16_t)packet.param3,
packet.param4, (uint8_t)packet.param5);
break;
#if GRIPPER_ENABLED == ENABLED
case MAV_CMD_DO_GRIPPER:
// param1 : gripper number (ignored)
// param2 : action (0=release, 1=grab). See GRIPPER_ACTIONS enum.
if(!copter.g2.gripper.enabled()) {
result = MAV_RESULT_FAILED;
} else {
result = MAV_RESULT_ACCEPTED;
switch ((uint8_t)packet.param2) {
case GRIPPER_ACTION_RELEASE:
copter.g2.gripper.release();
break;
case GRIPPER_ACTION_GRAB:
copter.g2.gripper.grab();
break;
default:
result = MAV_RESULT_FAILED;
break;
}
}
break;
#endif
#if WINCH_ENABLED == ENABLED
case MAV_CMD_DO_WINCH:
// param1 : winch number (ignored)
// param2 : action (0=relax, 1=relative length control, 2=rate control). See WINCH_ACTIONS enum.
if (!copter.g2.winch.enabled()) {
result = MAV_RESULT_FAILED;
} else {
result = MAV_RESULT_ACCEPTED;
switch ((uint8_t)packet.param2) {
case WINCH_RELAXED:
copter.g2.winch.relax();
copter.Log_Write_Event(DATA_WINCH_RELAXED);
break;
case WINCH_RELATIVE_LENGTH_CONTROL: {
copter.g2.winch.release_length(packet.param3, fabsf(packet.param4));
copter.Log_Write_Event(DATA_WINCH_LENGTH_CONTROL);
break;
}
case WINCH_RATE_CONTROL: {
if (fabsf(packet.param4) <= copter.g2.winch.get_rate_max()) {
copter.g2.winch.set_desired_rate(packet.param4);
copter.Log_Write_Event(DATA_WINCH_RATE_CONTROL);
} else {
result = MAV_RESULT_FAILED;
}
break;
}
default:
result = MAV_RESULT_FAILED;
break;
}
}
break;
#endif
/* Solo user presses Fly button */
case MAV_CMD_SOLO_BTN_FLY_CLICK: {
result = MAV_RESULT_ACCEPTED;
if (copter.failsafe.radio) {
break;
}
// set mode to Loiter or fall back to AltHold
if (!copter.set_mode(LOITER, MODE_REASON_GCS_COMMAND)) {
copter.set_mode(ALT_HOLD, MODE_REASON_GCS_COMMAND);
}
break;
}
/* Solo user holds down Fly button for a couple of seconds */
case MAV_CMD_SOLO_BTN_FLY_HOLD: {
result = MAV_RESULT_ACCEPTED;
if (copter.failsafe.radio) {
break;
}
if (!copter.motors->armed()) {
// if disarmed, arm motors
copter.init_arm_motors(true);
} else if (copter.ap.land_complete) {
// if armed and landed, takeoff
if (copter.set_mode(LOITER, MODE_REASON_GCS_COMMAND)) {
copter.do_user_takeoff(packet.param1*100, true);
}
} else {
// if flying, land
copter.set_mode(LAND, MODE_REASON_GCS_COMMAND);
}
break;
}
/* Solo user presses pause button */
case MAV_CMD_SOLO_BTN_PAUSE_CLICK: {
result = MAV_RESULT_ACCEPTED;
if (copter.failsafe.radio) {
break;
}
if (copter.motors->armed()) {
if (copter.ap.land_complete) {
// if landed, disarm motors
copter.init_disarm_motors();
} else {
// assume that shots modes are all done in guided.
// NOTE: this may need to change if we add a non-guided shot mode
bool shot_mode = (!is_zero(packet.param1) && (copter.control_mode == GUIDED || copter.control_mode == GUIDED_NOGPS));
if (!shot_mode) {
if (copter.set_mode(BRAKE, MODE_REASON_GCS_COMMAND)) {
copter.mode_brake.timeout_to_loiter_ms(2500);
} else {
copter.set_mode(ALT_HOLD, MODE_REASON_GCS_COMMAND);
}
} else {
// SoloLink is expected to handle pause in shots
}
}
}
break;
}
case MAV_CMD_ACCELCAL_VEHICLE_POS:
result = MAV_RESULT_FAILED;
if (copter.ins.get_acal()->gcs_vehicle_position(packet.param1)) {
result = MAV_RESULT_ACCEPTED;
}
break;
default:
result = handle_command_long_message(packet);
break;
}
// send ACK or NAK
mavlink_msg_command_ack_send_buf(msg, chan, packet.command, result);
break;
}
case MAVLINK_MSG_ID_COMMAND_ACK: // MAV ID: 77
{
copter.command_ack_counter++;
break;
}
case MAVLINK_MSG_ID_SET_ATTITUDE_TARGET: // MAV ID: 82
{
// decode packet
mavlink_set_attitude_target_t packet;
mavlink_msg_set_attitude_target_decode(msg, &packet);
// exit if vehicle is not in Guided mode or Auto-Guided mode
if ((copter.control_mode != GUIDED) && (copter.control_mode != GUIDED_NOGPS) && !(copter.control_mode == AUTO && copter.mode_auto.mode() == Auto_NavGuided)) {
break;
}
// ensure type_mask specifies to use attitude and thrust
if ((packet.type_mask & ((1<<7)|(1<<6))) != 0) {
break;
}
// convert thrust to climb rate
packet.thrust = constrain_float(packet.thrust, 0.0f, 1.0f);
float climb_rate_cms = 0.0f;
if (is_equal(packet.thrust, 0.5f)) {
climb_rate_cms = 0.0f;
} else if (packet.thrust > 0.5f) {
// climb at up to WPNAV_SPEED_UP
climb_rate_cms = (packet.thrust - 0.5f) * 2.0f * copter.wp_nav->get_speed_up();
} else {
// descend at up to WPNAV_SPEED_DN
climb_rate_cms = (0.5f - packet.thrust) * 2.0f * -fabsf(copter.wp_nav->get_speed_down());
}
// if the body_yaw_rate field is ignored, use the commanded yaw position
// otherwise use the commanded yaw rate
bool use_yaw_rate = false;
if ((packet.type_mask & (1<<2)) == 0) {
use_yaw_rate = true;
}
copter.mode_guided.set_angle(Quaternion(packet.q[0],packet.q[1],packet.q[2],packet.q[3]),
climb_rate_cms, use_yaw_rate, packet.body_yaw_rate);
break;
}
case MAVLINK_MSG_ID_SET_POSITION_TARGET_LOCAL_NED: // MAV ID: 84
{
// decode packet
mavlink_set_position_target_local_ned_t packet;
mavlink_msg_set_position_target_local_ned_decode(msg, &packet);
// exit if vehicle is not in Guided mode or Auto-Guided mode
if ((copter.control_mode != GUIDED) && !(copter.control_mode == AUTO && copter.mode_auto.mode() == Auto_NavGuided)) {
break;
}
// check for supported coordinate frames
if (packet.coordinate_frame != MAV_FRAME_LOCAL_NED &&
packet.coordinate_frame != MAV_FRAME_LOCAL_OFFSET_NED &&
packet.coordinate_frame != MAV_FRAME_BODY_NED &&
packet.coordinate_frame != MAV_FRAME_BODY_OFFSET_NED) {
break;
}
bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE;
bool vel_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE;
bool acc_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE;
bool yaw_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE;
bool yaw_rate_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE;
/*
* for future use:
* bool force = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_FORCE;
*/
// prepare position
Vector3f pos_vector;
if (!pos_ignore) {
// convert to cm
pos_vector = Vector3f(packet.x * 100.0f, packet.y * 100.0f, -packet.z * 100.0f);
// rotate to body-frame if necessary
if (packet.coordinate_frame == MAV_FRAME_BODY_NED ||
packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) {
copter.rotate_body_frame_to_NE(pos_vector.x, pos_vector.y);
}
// add body offset if necessary
if (packet.coordinate_frame == MAV_FRAME_LOCAL_OFFSET_NED ||
packet.coordinate_frame == MAV_FRAME_BODY_NED ||
packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) {
pos_vector += copter.inertial_nav.get_position();
} else {
// convert from alt-above-home to alt-above-ekf-origin
pos_vector.z = copter.pv_alt_above_origin(pos_vector.z);
}
}
// prepare velocity
Vector3f vel_vector;
if (!vel_ignore) {
// convert to cm
vel_vector = Vector3f(packet.vx * 100.0f, packet.vy * 100.0f, -packet.vz * 100.0f);
// rotate to body-frame if necessary
if (packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) {
copter.rotate_body_frame_to_NE(vel_vector.x, vel_vector.y);
}
}
// prepare yaw
float yaw_cd = 0.0f;
bool yaw_relative = false;
float yaw_rate_cds = 0.0f;
if (!yaw_ignore) {
yaw_cd = ToDeg(packet.yaw) * 100.0f;
yaw_relative = packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED;
}
if (!yaw_rate_ignore) {
yaw_rate_cds = ToDeg(packet.yaw_rate) * 100.0f;
}
// send request
if (!pos_ignore && !vel_ignore && acc_ignore) {
if (copter.mode_guided.set_destination_posvel(pos_vector, vel_vector, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative)) {
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_FAILED;
}
} else if (pos_ignore && !vel_ignore && acc_ignore) {
copter.mode_guided.set_velocity(vel_vector, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative);
result = MAV_RESULT_ACCEPTED;
} else if (!pos_ignore && vel_ignore && acc_ignore) {
if (copter.mode_guided.set_destination(pos_vector, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative)) {
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_FAILED;
}
} else {
result = MAV_RESULT_FAILED;
}
break;
}
case MAVLINK_MSG_ID_SET_POSITION_TARGET_GLOBAL_INT: // MAV ID: 86
{
// decode packet
mavlink_set_position_target_global_int_t packet;
mavlink_msg_set_position_target_global_int_decode(msg, &packet);
// exit if vehicle is not in Guided mode or Auto-Guided mode
if ((copter.control_mode != GUIDED) && !(copter.control_mode == AUTO && copter.mode_auto.mode() == Auto_NavGuided)) {
break;
}
// check for supported coordinate frames
if (packet.coordinate_frame != MAV_FRAME_GLOBAL &&
packet.coordinate_frame != MAV_FRAME_GLOBAL_INT &&
packet.coordinate_frame != MAV_FRAME_GLOBAL_RELATIVE_ALT && // solo shot manager incorrectly sends RELATIVE_ALT instead of RELATIVE_ALT_INT
packet.coordinate_frame != MAV_FRAME_GLOBAL_RELATIVE_ALT_INT &&
packet.coordinate_frame != MAV_FRAME_GLOBAL_TERRAIN_ALT &&
packet.coordinate_frame != MAV_FRAME_GLOBAL_TERRAIN_ALT_INT) {
break;
}
bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE;
bool vel_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE;
bool acc_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE;
bool yaw_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE;
bool yaw_rate_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE;
/*
* for future use:
* bool force = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_FORCE;
*/
Vector3f pos_neu_cm; // position (North, East, Up coordinates) in centimeters
if(!pos_ignore) {
// sanity check location
if (!check_latlng(packet.lat_int, packet.lon_int)) {
result = MAV_RESULT_FAILED;
break;
}
Location loc;
loc.lat = packet.lat_int;
loc.lng = packet.lon_int;
loc.alt = packet.alt*100;
switch (packet.coordinate_frame) {
case MAV_FRAME_GLOBAL_RELATIVE_ALT: // solo shot manager incorrectly sends RELATIVE_ALT instead of RELATIVE_ALT_INT
case MAV_FRAME_GLOBAL_RELATIVE_ALT_INT:
loc.flags.relative_alt = true;
loc.flags.terrain_alt = false;
break;
case MAV_FRAME_GLOBAL_TERRAIN_ALT:
case MAV_FRAME_GLOBAL_TERRAIN_ALT_INT:
loc.flags.relative_alt = true;
loc.flags.terrain_alt = true;
break;
case MAV_FRAME_GLOBAL:
case MAV_FRAME_GLOBAL_INT:
default:
// pv_location_to_vector does not support absolute altitudes.
// Convert the absolute altitude to a home-relative altitude before calling pv_location_to_vector
loc.alt -= copter.ahrs.get_home().alt;
loc.flags.relative_alt = true;
loc.flags.terrain_alt = false;
break;
}
pos_neu_cm = copter.pv_location_to_vector(loc);
}
// prepare yaw
float yaw_cd = 0.0f;
bool yaw_relative = false;
float yaw_rate_cds = 0.0f;
if (!yaw_ignore) {
yaw_cd = ToDeg(packet.yaw) * 100.0f;
yaw_relative = packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED;
}
if (!yaw_rate_ignore) {
yaw_rate_cds = ToDeg(packet.yaw_rate) * 100.0f;
}
if (!pos_ignore && !vel_ignore && acc_ignore) {
if (copter.mode_guided.set_destination_posvel(pos_neu_cm, Vector3f(packet.vx * 100.0f, packet.vy * 100.0f, -packet.vz * 100.0f), !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative)) {
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_FAILED;
}
} else if (pos_ignore && !vel_ignore && acc_ignore) {
copter.mode_guided.set_velocity(Vector3f(packet.vx * 100.0f, packet.vy * 100.0f, -packet.vz * 100.0f), !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative);
result = MAV_RESULT_ACCEPTED;
} else if (!pos_ignore && vel_ignore && acc_ignore) {
if (copter.mode_guided.set_destination(pos_neu_cm, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative)) {
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_FAILED;
}
} else {
result = MAV_RESULT_FAILED;
}
break;
}
case MAVLINK_MSG_ID_DISTANCE_SENSOR:
{
result = MAV_RESULT_ACCEPTED;
copter.rangefinder.handle_msg(msg);
#if PROXIMITY_ENABLED == ENABLED
copter.g2.proximity.handle_msg(msg);
#endif
break;
}
#if HIL_MODE != HIL_MODE_DISABLED
case MAVLINK_MSG_ID_HIL_STATE: // MAV ID: 90
{
mavlink_hil_state_t packet;
mavlink_msg_hil_state_decode(msg, &packet);
// sanity check location
if (!check_latlng(packet.lat, packet.lon)) {
break;
}
// set gps hil sensor
Location loc;
loc.lat = packet.lat;
loc.lng = packet.lon;
loc.alt = packet.alt/10;
Vector3f vel(packet.vx, packet.vy, packet.vz);
vel *= 0.01f;
gps.setHIL(0, AP_GPS::GPS_OK_FIX_3D,
packet.time_usec/1000,
loc, vel, 10, 0);
// rad/sec
Vector3f gyros;
gyros.x = packet.rollspeed;
gyros.y = packet.pitchspeed;
gyros.z = packet.yawspeed;
// m/s/s
Vector3f accels;
accels.x = packet.xacc * (GRAVITY_MSS/1000.0f);
accels.y = packet.yacc * (GRAVITY_MSS/1000.0f);
accels.z = packet.zacc * (GRAVITY_MSS/1000.0f);
ins.set_gyro(0, gyros);
ins.set_accel(0, accels);
copter.barometer.setHIL(packet.alt*0.001f);
copter.compass.setHIL(0, packet.roll, packet.pitch, packet.yaw);
copter.compass.setHIL(1, packet.roll, packet.pitch, packet.yaw);
break;
}
#endif // HIL_MODE != HIL_MODE_DISABLED
case MAVLINK_MSG_ID_RADIO:
case MAVLINK_MSG_ID_RADIO_STATUS: // MAV ID: 109
{
handle_radio_status(msg, copter.DataFlash, copter.should_log(MASK_LOG_PM));
break;
}
#if PRECISION_LANDING == ENABLED
case MAVLINK_MSG_ID_LANDING_TARGET:
result = MAV_RESULT_ACCEPTED;
copter.precland.handle_msg(msg);
break;
#endif
#if AC_FENCE == ENABLED
// send or receive fence points with GCS
case MAVLINK_MSG_ID_FENCE_POINT: // MAV ID: 160
case MAVLINK_MSG_ID_FENCE_FETCH_POINT:
copter.fence.handle_msg(*this, msg);
break;
#endif // AC_FENCE == ENABLED
#if MOUNT == ENABLED
//deprecated. Use MAV_CMD_DO_MOUNT_CONFIGURE
case MAVLINK_MSG_ID_MOUNT_CONFIGURE: // MAV ID: 204
copter.camera_mount.configure_msg(msg);
break;
//deprecated. Use MAV_CMD_DO_MOUNT_CONTROL
case MAVLINK_MSG_ID_MOUNT_CONTROL:
if(!copter.camera_mount.has_pan_control()) {
copter.set_auto_yaw_look_at_heading(mavlink_msg_mount_control_get_input_c(msg)/100.0f, 0.0f, 0, 0);
}
copter.camera_mount.control_msg(msg);
break;
#endif // MOUNT == ENABLED
case MAVLINK_MSG_ID_TERRAIN_DATA:
case MAVLINK_MSG_ID_TERRAIN_CHECK:
#if AP_TERRAIN_AVAILABLE && AC_TERRAIN
copter.terrain.handle_data(chan, msg);
#endif
break;
case MAVLINK_MSG_ID_SET_HOME_POSITION:
{
mavlink_set_home_position_t packet;
mavlink_msg_set_home_position_decode(msg, &packet);
if((packet.latitude == 0) && (packet.longitude == 0) && (packet.altitude == 0)) {
copter.set_home_to_current_location(true);
} else {
// sanity check location
if (!check_latlng(packet.latitude, packet.longitude)) {
break;
}
Location new_home_loc;
new_home_loc.lat = packet.latitude;
new_home_loc.lng = packet.longitude;
new_home_loc.alt = packet.altitude / 10;
copter.set_home(new_home_loc, true);
}
break;
}
case MAVLINK_MSG_ID_ADSB_VEHICLE:
case MAVLINK_MSG_ID_UAVIONIX_ADSB_OUT_CFG:
case MAVLINK_MSG_ID_UAVIONIX_ADSB_OUT_DYNAMIC:
case MAVLINK_MSG_ID_UAVIONIX_ADSB_TRANSCEIVER_HEALTH_REPORT:
#if ADSB_ENABLED == ENABLED
copter.adsb.handle_message(chan, msg);
#endif
break;
case MAVLINK_MSG_ID_VISION_POSITION_DELTA:
#if VISUAL_ODOMETRY_ENABLED == ENABLED
copter.g2.visual_odom.handle_msg(msg);
#endif
break;
#if TOY_MODE_ENABLED == ENABLED
case MAVLINK_MSG_ID_NAMED_VALUE_INT:
copter.g2.toy_mode.handle_message(msg);
break;
#endif
default:
handle_common_message(msg);
break;
} // end switch
} // end handle mavlink
/*
* a delay() callback that processes MAVLink packets. We set this as the
* callback in long running library initialisation routines to allow
* MAVLink to process packets while waiting for the initialisation to
* complete
*/
void Copter::mavlink_delay_cb()
{
static uint32_t last_1hz, last_50hz, last_5s;
if (!gcs().chan(0).initialised || in_mavlink_delay) return;
in_mavlink_delay = true;
DataFlash.EnableWrites(false);
uint32_t tnow = millis();
if (tnow - last_1hz > 1000) {
last_1hz = tnow;
gcs_send_heartbeat();
gcs().send_message(MSG_EXTENDED_STATUS1);
}
if (tnow - last_50hz > 20) {
last_50hz = tnow;
gcs_check_input();
gcs_data_stream_send();
gcs_send_deferred();
notify.update();
}
if (tnow - last_5s > 5000) {
last_5s = tnow;
gcs().send_text(MAV_SEVERITY_INFO, "Initialising APM");
}
check_usb_mux();
DataFlash.EnableWrites(true);
in_mavlink_delay = false;
}
/*
* send data streams in the given rate range on both links
*/
void Copter::gcs_data_stream_send(void)
{
gcs().data_stream_send();
}
/*
* look for incoming commands on the GCS links
*/
void Copter::gcs_check_input(void)
{
gcs().update();
}
/*
return true if we will accept this packet. Used to implement SYSID_ENFORCE
*/
bool GCS_MAVLINK_Copter::accept_packet(const mavlink_status_t &status, mavlink_message_t &msg)
{
if (!copter.g2.sysid_enforce) {
return true;
}
if (msg.msgid == MAVLINK_MSG_ID_RADIO || msg.msgid == MAVLINK_MSG_ID_RADIO_STATUS) {
return true;
}
return (msg.sysid == copter.g.sysid_my_gcs);
}
AP_Mission *GCS_MAVLINK_Copter::get_mission()
{
return &copter.mission;
}
Compass *GCS_MAVLINK_Copter::get_compass() const
{
return &copter.compass;
}
AP_Camera *GCS_MAVLINK_Copter::get_camera() const
{
#if CAMERA == ENABLED
return &copter.camera;
#else
return nullptr;
#endif
}
AP_ServoRelayEvents *GCS_MAVLINK_Copter::get_servorelayevents() const
{
return &copter.ServoRelayEvents;
}
AP_AdvancedFailsafe *GCS_MAVLINK_Copter::get_advanced_failsafe() const
{
#if ADVANCED_FAILSAFE == ENABLED
return &copter.g2.afs;
#else
return nullptr;
#endif
}
MAV_RESULT GCS_MAVLINK_Copter::handle_flight_termination(const mavlink_command_long_t &packet) {
MAV_RESULT result = MAV_RESULT_FAILED;
#if ADVANCED_FAILSAFE == ENABLED
if (GCS_MAVLINK::handle_flight_termination(packet) != MAV_RESULT_ACCEPTED) {
#endif
if (packet.param1 > 0.5f) {
copter.init_disarm_motors();
result = MAV_RESULT_ACCEPTED;
}
#if ADVANCED_FAILSAFE == ENABLED
} else {
result = MAV_RESULT_ACCEPTED;
}
#endif
return result;
}
AP_Rally *GCS_MAVLINK_Copter::get_rally() const
{
#if AC_RALLY == ENABLED
return &copter.rally;
#else
return nullptr;
#endif
}
bool GCS_MAVLINK_Copter::set_mode(const uint8_t mode)
{
#ifdef DISALLOW_GCS_MODE_CHANGE_DURING_RC_FAILSAFE
if (copter.failsafe.radio) {
// don't allow mode changes while in radio failsafe
return false;
}
#endif
return copter.set_mode((control_mode_t)mode, MODE_REASON_GCS_COMMAND);
}
const AP_FWVersion &GCS_MAVLINK_Copter::get_fwver() const
{
return copter.fwver;
}
void GCS_MAVLINK_Copter::set_ekf_origin(const Location& loc)
{
copter.set_ekf_origin(loc);
}