ardupilot/ArduCopterMega/setup.pde
jasonshort 82e51aec82 Big update 2.0.38
moved ground start to first arming
added ground start flag
moved throttle_integrator to 50hz loop
CAMERA_STABILIZER deprecated - now always on
renamed current logging bit mask to match APM
added MA filter to PID - D term
Adjusted PIDs based on continued testing and new PID filter
added MASK_LOG_SET_DEFAULTS to match APM
moved some stuff out of ground start into system start where it belonged
Added slower Yaw gains for DCM when the copter is in the air
changed camera output to be none scaled PWM
fixed bug where ground_temperature was unfiltered
shortened Baro startup time
fixed issue with Nav_WP integrator not being reset
RTL no longer yaws towards home
Circle mode for flying a 10m circle around the point where it was engaged. - Not tested at all! Consider Circle mode as alpha.


git-svn-id: https://arducopter.googlecode.com/svn/trunk@2966 f9c3cf11-9bcb-44bc-f272-b75c42450872
2011-07-30 20:42:54 +00:00

1229 lines
29 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#if CLI_ENABLED == ENABLED
// Functions called from the setup menu
static int8_t setup_radio (uint8_t argc, const Menu::arg *argv);
static int8_t setup_motors (uint8_t argc, const Menu::arg *argv);
static int8_t setup_accel (uint8_t argc, const Menu::arg *argv);
static int8_t setup_frame (uint8_t argc, const Menu::arg *argv);
static int8_t setup_factory (uint8_t argc, const Menu::arg *argv);
static int8_t setup_erase (uint8_t argc, const Menu::arg *argv);
static int8_t setup_flightmodes (uint8_t argc, const Menu::arg *argv);
static int8_t setup_batt_monitor (uint8_t argc, const Menu::arg *argv);
static int8_t setup_sonar (uint8_t argc, const Menu::arg *argv);
static int8_t setup_compass (uint8_t argc, const Menu::arg *argv);
//static int8_t setup_mag_offset (uint8_t argc, const Menu::arg *argv);
static int8_t setup_declination (uint8_t argc, const Menu::arg *argv);
static int8_t setup_esc (uint8_t argc, const Menu::arg *argv);
#ifdef OPTFLOW_ENABLED
static int8_t setup_optflow (uint8_t argc, const Menu::arg *argv);
#endif
static int8_t setup_show (uint8_t argc, const Menu::arg *argv);
#if FRAME_CONFIG == HELI_FRAME
static int8_t setup_heli (uint8_t argc, const Menu::arg *argv);
static int8_t setup_gyro (uint8_t argc, const Menu::arg *argv);
#endif
// Command/function table for the setup menu
const struct Menu::command setup_menu_commands[] PROGMEM = {
// command function called
// ======= ===============
{"erase", setup_erase},
{"reset", setup_factory},
{"radio", setup_radio},
{"frame", setup_frame},
{"motors", setup_motors},
{"esc", setup_esc},
{"level", setup_accel},
{"modes", setup_flightmodes},
{"battery", setup_batt_monitor},
{"sonar", setup_sonar},
{"compass", setup_compass},
// {"offsets", setup_mag_offset},
{"declination", setup_declination},
#ifdef OPTFLOW_ENABLED
{"optflow", setup_optflow},
#endif
#if FRAME_CONFIG == HELI_FRAME
{"heli", setup_heli},
{"gyro", setup_gyro},
#endif
{"show", setup_show}
};
// Create the setup menu object.
MENU(setup_menu, "setup", setup_menu_commands);
// Called from the top-level menu to run the setup menu.
static int8_t
setup_mode(uint8_t argc, const Menu::arg *argv)
{
// Give the user some guidance
Serial.printf_P(PSTR("Setup Mode\n\n\n"));
//"\n"
//"IMPORTANT: if you have not previously set this system up, use the\n"
//"'reset' command to initialize the EEPROM to sensible default values\n"
//"and then the 'radio' command to configure for your radio.\n"
//"\n"));
if(g.rc_1.radio_min >= 1300){
delay(1000);
Serial.printf_P(PSTR("\n!Warning, your radio is not configured!"));
delay(1000);
Serial.printf_P(PSTR("\n Type 'radio' to configure now.\n\n"));
}
// Run the setup menu. When the menu exits, we will return to the main menu.
setup_menu.run();
return 0;
}
// Print the current configuration.
// Called by the setup menu 'show' command.
static int8_t
setup_show(uint8_t argc, const Menu::arg *argv)
{
// clear the area
print_blanks(8);
report_version();
report_radio();
report_frame();
report_batt_monitor();
report_sonar();
//report_gains();
//report_xtrack();
//report_throttle();
report_flight_modes();
report_imu();
report_compass();
#ifdef OPTFLOW_ENABLED
report_optflow();
#endif
#if FRAME_CONFIG == HELI_FRAME
report_heli();
report_gyro();
#endif
AP_Var_menu_show(argc, argv);
return(0);
}
// Initialise the EEPROM to 'factory' settings (mostly defined in APM_Config.h or via defaults).
// Called by the setup menu 'factoryreset' command.
static int8_t
setup_factory(uint8_t argc, const Menu::arg *argv)
{
int c;
Serial.printf_P(PSTR("\n'Y' + Enter to factory reset, any other key to abort:\n"));
do {
c = Serial.read();
} while (-1 == c);
if (('y' != c) && ('Y' != c))
return(-1);
AP_Var::erase_all();
Serial.printf_P(PSTR("\nFACTORY RESET complete - reboot APM"));
delay(1000);
//default_gains();
for (;;) {
}
// note, cannot actually return here
return(0);
}
// Perform radio setup.
// Called by the setup menu 'radio' command.
static int8_t
setup_radio(uint8_t argc, const Menu::arg *argv)
{
Serial.println("\n\nRadio Setup:");
uint8_t i;
for(i = 0; i < 100;i++){
delay(20);
read_radio();
}
if(g.rc_1.radio_in < 500){
while(1){
//Serial.printf_P(PSTR("\nNo radio; Check connectors."));
delay(1000);
// stop here
}
}
g.rc_1.radio_min = g.rc_1.radio_in;
g.rc_2.radio_min = g.rc_2.radio_in;
g.rc_3.radio_min = g.rc_3.radio_in;
g.rc_4.radio_min = g.rc_4.radio_in;
g.rc_5.radio_min = g.rc_5.radio_in;
g.rc_6.radio_min = g.rc_6.radio_in;
g.rc_7.radio_min = g.rc_7.radio_in;
g.rc_8.radio_min = g.rc_8.radio_in;
g.rc_1.radio_max = g.rc_1.radio_in;
g.rc_2.radio_max = g.rc_2.radio_in;
g.rc_3.radio_max = g.rc_3.radio_in;
g.rc_4.radio_max = g.rc_4.radio_in;
g.rc_5.radio_max = g.rc_5.radio_in;
g.rc_6.radio_max = g.rc_6.radio_in;
g.rc_7.radio_max = g.rc_7.radio_in;
g.rc_8.radio_max = g.rc_8.radio_in;
g.rc_1.radio_trim = g.rc_1.radio_in;
g.rc_2.radio_trim = g.rc_2.radio_in;
g.rc_4.radio_trim = g.rc_4.radio_in;
// 3 is not trimed
g.rc_5.radio_trim = 1500;
g.rc_6.radio_trim = 1500;
g.rc_7.radio_trim = 1500;
g.rc_8.radio_trim = 1500;
Serial.printf_P(PSTR("\nMove all controls to each extreme. Hit Enter to save: "));
while(1){
delay(20);
// Filters radio input - adjust filters in the radio.pde file
// ----------------------------------------------------------
read_radio();
g.rc_1.update_min_max();
g.rc_2.update_min_max();
g.rc_3.update_min_max();
g.rc_4.update_min_max();
g.rc_5.update_min_max();
g.rc_6.update_min_max();
g.rc_7.update_min_max();
g.rc_8.update_min_max();
if(Serial.available() > 0){
delay(20);
Serial.flush();
g.rc_1.save_eeprom();
g.rc_2.save_eeprom();
g.rc_3.save_eeprom();
g.rc_4.save_eeprom();
g.rc_5.save_eeprom();
g.rc_6.save_eeprom();
g.rc_7.save_eeprom();
g.rc_8.save_eeprom();
print_done();
break;
}
}
report_radio();
return(0);
}
static int8_t
setup_esc(uint8_t argc, const Menu::arg *argv)
{
Serial.printf_P(PSTR("\nESC Calibration:\n"
"-1 Unplug USB and battery\n"
"-2 Move CLI/FLY switch to FLY mode\n"
"-3 Move throttle to max, connect battery\n"
"-4 After two long beeps, throttle to 0, then test\n\n"
" Press Enter to cancel.\n"));
g.esc_calibrate.set_and_save(1);
while(1){
delay(20);
if(Serial.available() > 0){
g.esc_calibrate.set_and_save(0);
return(0);
}
}
}
static int8_t
setup_motors(uint8_t argc, const Menu::arg *argv)
{
while(1){
delay(20);
read_radio();
output_motor_test();
if(Serial.available() > 0){
g.esc_calibrate.set_and_save(0);
return(0);
}
}
}
static int8_t
setup_accel(uint8_t argc, const Menu::arg *argv)
{
imu.init_accel();
print_accel_offsets();
report_imu();
return(0);
}
static int8_t
setup_frame(uint8_t argc, const Menu::arg *argv)
{
if (!strcmp_P(argv[1].str, PSTR("x"))) {
g.frame_orientation.set_and_save(X_FRAME);
} else if (!strcmp_P(argv[1].str, PSTR("p"))) {
g.frame_orientation.set_and_save(PLUS_FRAME);
} else if (!strcmp_P(argv[1].str, PSTR("+"))) {
g.frame_orientation.set_and_save(PLUS_FRAME);
} else if (!strcmp_P(argv[1].str, PSTR("v"))) {
g.frame_orientation.set_and_save(V_FRAME);
}else{
Serial.printf_P(PSTR("\nOptions:[x,+,v]\n"));
report_frame();
return 0;
}
report_frame();
return 0;
}
static int8_t
setup_flightmodes(uint8_t argc, const Menu::arg *argv)
{
byte _switchPosition = 0;
byte _oldSwitchPosition = 0;
byte mode = 0;
Serial.printf_P(PSTR("\nMove RC toggle switch to each position to edit, move aileron stick to select modes."));
print_hit_enter();
while(1){
delay(20);
read_radio();
_switchPosition = readSwitch();
// look for control switch change
if (_oldSwitchPosition != _switchPosition){
mode = flight_modes[_switchPosition];
mode = constrain(mode, 0, NUM_MODES-1);
// update the user
print_switch(_switchPosition, mode);
// Remember switch position
_oldSwitchPosition = _switchPosition;
}
// look for stick input
if (radio_input_switch() == true){
mode++;
if(mode >= NUM_MODES)
mode = 0;
// save new mode
flight_modes[_switchPosition] = mode;
// print new mode
print_switch(_switchPosition, mode);
}
// escape hatch
if(Serial.available() > 0){
for (mode=0; mode<6; mode++)
flight_modes[mode].save();
print_done();
report_flight_modes();
return (0);
}
}
}
static int8_t
setup_declination(uint8_t argc, const Menu::arg *argv)
{
compass.set_declination(radians(argv[1].f));
report_compass();
return 0;
}
static int8_t
setup_erase(uint8_t argc, const Menu::arg *argv)
{
zero_eeprom();
return 0;
}
static int8_t
setup_compass(uint8_t argc, const Menu::arg *argv)
{
if (!strcmp_P(argv[1].str, PSTR("on"))) {
g.compass_enabled.set_and_save(true);
init_compass();
} else if (!strcmp_P(argv[1].str, PSTR("off"))) {
clear_offsets();
g.compass_enabled.set_and_save(false);
}else{
Serial.printf_P(PSTR("\nOptions:[on,off]\n"));
report_compass();
return 0;
}
g.compass_enabled.save();
report_compass();
return 0;
}
static int8_t
setup_batt_monitor(uint8_t argc, const Menu::arg *argv)
{
if (!strcmp_P(argv[1].str, PSTR("off"))) {
g.battery_monitoring.set_and_save(0);
} else if(argv[1].i > 0 && argv[1].i <= 4){
g.battery_monitoring.set_and_save(argv[1].i);
} else {
Serial.printf_P(PSTR("\nOptions: off, 1-4"));
}
report_batt_monitor();
return 0;
}
static int8_t
setup_sonar(uint8_t argc, const Menu::arg *argv)
{
if (!strcmp_P(argv[1].str, PSTR("on"))) {
g.sonar_enabled.set_and_save(true);
} else if (!strcmp_P(argv[1].str, PSTR("off"))) {
g.sonar_enabled.set_and_save(false);
}else{
Serial.printf_P(PSTR("\nOptions:[on, off]\n"));
report_sonar();
return 0;
}
report_sonar();
return 0;
}
#if FRAME_CONFIG == HELI_FRAME
// Perform heli setup.
// Called by the setup menu 'radio' command.
static int8_t
setup_heli(uint8_t argc, const Menu::arg *argv)
{
uint8_t active_servo = 0;
int value = 0;
int temp;
int state = 0; // 0 = set rev+pos, 1 = capture min/max
int max_roll, max_pitch, min_coll, max_coll, min_tail, max_tail;
// initialise swash plate
heli_init_swash();
// source swash plate movements directly from
heli_manual_override = true;
// display initial settings
report_heli();
// display help
Serial.printf_P(PSTR("Instructions:"));
print_divider();
Serial.printf_P(PSTR("\td\t\tdisplay settings\n"));
Serial.printf_P(PSTR("\t1~4\t\tselect servo\n"));
Serial.printf_P(PSTR("\ta or z\t\tmove mid up/down\n"));
Serial.printf_P(PSTR("\tc\t\tset coll when blade pitch zero\n"));
Serial.printf_P(PSTR("\tm\t\tset roll, pitch, coll min/max\n"));
Serial.printf_P(PSTR("\tp<angle>\tset pos (i.e. p0 = front, p90 = right)\n"));
Serial.printf_P(PSTR("\tr\t\treverse servo\n"));
Serial.printf_P(PSTR("\tt<angle>\tset trim (-500 ~ 500)\n"));
Serial.printf_P(PSTR("\tx\t\texit & save\n"));
// start capturing
while( value != 'x' ) {
// read radio although we don't use it yet
read_radio();
// record min/max
if( state == 1 ) {
if( abs(g.rc_1.control_in) > max_roll )
max_roll = abs(g.rc_1.control_in);
if( abs(g.rc_2.control_in) > max_pitch )
max_pitch = abs(g.rc_2.control_in);
if( g.rc_3.radio_in < min_coll )
min_coll = g.rc_3.radio_in;
if( g.rc_3.radio_in > max_coll )
max_coll = g.rc_3.radio_in;
min_tail = min(g.rc_4.radio_in, min_tail);
max_tail = max(g.rc_4.radio_in, max_tail);
//Serial.printf_P(PSTR("4: ri:%d \tro:%d \tso:%d \n"), (int)g.rc_4.radio_in, (int)g.rc_4.radio_out, (int)g.rc_4.servo_out);
}
if( Serial.available() ) {
value = Serial.read();
// process the user's input
switch( value ) {
case '1':
active_servo = CH_1;
break;
case '2':
active_servo = CH_2;
break;
case '3':
active_servo = CH_3;
break;
case '4':
active_servo = CH_4;
break;
case 'a':
case 'A':
heli_get_servo(active_servo)->radio_trim += 10;
break;
case 'c':
case 'C':
if( g.rc_3.radio_in >= 900 && g.rc_3.radio_in <= 2100 ) {
g.heli_coll_mid = g.rc_3.radio_in;
Serial.printf_P(PSTR("Collective when blade pitch at zero: %d\n"),(int)g.heli_coll_mid);
}
break;
case 'd':
case 'D':
// display settings
report_heli();
break;
case 'm':
case 'M':
if( state == 0 ) {
state = 1; // switch to capture min/max mode
Serial.printf_P(PSTR("Move coll, roll, pitch and tail to extremes, press 'm' when done\n"),active_servo+1, temp);
// reset servo ranges
g.heli_roll_max = g.heli_pitch_max = 4500;
g.heli_coll_min = 1000;
g.heli_coll_max = 2000;
g.heli_servo_4.radio_min = 1000;
g.heli_servo_4.radio_max = 2000;
// set sensible values in temp variables
max_roll = abs(g.rc_1.control_in);
max_pitch = abs(g.rc_2.control_in);
min_coll = 2000;
max_coll = 1000;
min_tail = max_tail = abs(g.rc_4.radio_in);
}else{
state = 0; // switch back to normal mode
// double check values aren't totally terrible
if( max_roll <= 1000 || max_pitch <= 1000 || (max_coll - min_coll < 200) || (max_tail - min_tail < 200) || min_tail < 1000 || max_tail > 2000 )
Serial.printf_P(PSTR("Invalid min/max captured roll:%d, pitch:%d, collective min: %d max: %d, tail min:%d max:%d\n"),max_roll,max_pitch,min_coll,max_coll,min_tail,max_tail);
else{
g.heli_roll_max = max_roll;
g.heli_pitch_max = max_pitch;
g.heli_coll_min = min_coll;
g.heli_coll_max = max_coll;
g.heli_servo_4.radio_min = min_tail;
g.heli_servo_4.radio_max = max_tail;
// reinitialise swash
heli_init_swash();
// display settings
report_heli();
}
}
break;
case 'p':
case 'P':
temp = read_num_from_serial();
if( temp >= -360 && temp <= 360 ) {
if( active_servo == CH_1 )
g.heli_servo1_pos = temp;
if( active_servo == CH_2 )
g.heli_servo2_pos = temp;
if( active_servo == CH_3 )
g.heli_servo3_pos = temp;
heli_init_swash();
Serial.printf_P(PSTR("Servo %d\t\tpos:%d\n"),active_servo+1, temp);
}
break;
case 'r':
case 'R':
heli_get_servo(active_servo)->set_reverse(!heli_get_servo(active_servo)->get_reverse());
break;
case 't':
case 'T':
temp = read_num_from_serial();
if( temp > 1000 )
temp -= 1500;
if( temp > -500 && temp < 500 ) {
heli_get_servo(active_servo)->radio_trim = 1500 + temp;
heli_init_swash();
Serial.printf_P(PSTR("Servo %d\t\ttrim:%d\n"),active_servo+1, 1500 + temp);
}
break;
case 'z':
case 'Z':
heli_get_servo(active_servo)->radio_trim -= 10;
break;
}
}
// allow swash plate to move
output_motors_armed();
delay(20);
}
// display final settings
report_heli();
// save to eeprom
g.heli_servo_1.save_eeprom();
g.heli_servo_2.save_eeprom();
g.heli_servo_3.save_eeprom();
g.heli_servo_4.save_eeprom();
g.heli_servo1_pos.save();
g.heli_servo2_pos.save();
g.heli_servo3_pos.save();
g.heli_roll_max.save();
g.heli_pitch_max.save();
g.heli_coll_min.save();
g.heli_coll_max.save();
g.heli_coll_mid.save();
// return swash plate movements to attitude controller
heli_manual_override = false;
return(0);
}
// setup for external tail gyro (for heli only)
static int8_t
setup_gyro(uint8_t argc, const Menu::arg *argv)
{
if (!strcmp_P(argv[1].str, PSTR("on"))) {
g.heli_ext_gyro_enabled.set_and_save(true);
// optionally capture the gain
if( argc >= 2 && argv[2].i >= 1000 && argv[2].i <= 2000 ) {
g.heli_ext_gyro_gain = argv[2].i;
g.heli_ext_gyro_gain.save();
}
} else if (!strcmp_P(argv[1].str, PSTR("off"))) {
g.heli_ext_gyro_enabled.set_and_save(false);
// capture gain if user simply provides a number
} else if( argv[1].i >= 1000 && argv[1].i <= 2000 ) {
g.heli_ext_gyro_enabled.set_and_save(true);
g.heli_ext_gyro_gain = argv[1].i;
g.heli_ext_gyro_gain.save();
}else{
Serial.printf_P(PSTR("\nOptions:[on, off] gain\n"));
}
report_gyro();
return 0;
}
#endif // FRAME_CONFIG == HELI
static void clear_offsets()
{
Vector3f _offsets(0.0,0.0,0.0);
compass.set_offsets(_offsets);
compass.save_offsets();
}
/*static int8_t
setup_mag_offset(uint8_t argc, const Menu::arg *argv)
{
Vector3f _offsets;
if (!strcmp_P(argv[1].str, PSTR("c"))) {
clear_offsets();
report_compass();
return (0);
}
print_hit_enter();
init_compass();
int _min[3] = {0,0,0};
int _max[3] = {0,0,0};
compass.read();
compass.calculate(0,0); // roll = 0, pitch = 0
while(1){
delay(50);
compass.read();
compass.calculate(0,0); // roll = 0, pitch = 0
if(compass.mag_x < _min[0]) _min[0] = compass.mag_x;
if(compass.mag_y < _min[1]) _min[1] = compass.mag_y;
if(compass.mag_z < _min[2]) _min[2] = compass.mag_z;
// capture max
if(compass.mag_x > _max[0]) _max[0] = compass.mag_x;
if(compass.mag_y > _max[1]) _max[1] = compass.mag_y;
if(compass.mag_z > _max[2]) _max[2] = compass.mag_z;
// calculate offsets
_offsets.x = (float)(_max[0] + _min[0]) / -2;
_offsets.y = (float)(_max[1] + _min[1]) / -2;
_offsets.z = (float)(_max[2] + _min[2]) / -2;
// display all to user
Serial.printf_P(PSTR("Heading: %u, \t (%d, %d, %d), (%4.4f, %4.4f, %4.4f)\n"),
(uint16_t)(wrap_360(ToDeg(compass.heading) * 100)) /100,
compass.mag_x,
compass.mag_y,
compass.mag_z,
_offsets.x,
_offsets.y,
_offsets.z);
if(Serial.available() > 1){
compass.set_offsets(_offsets);
//compass.set_offsets(mag_offset_x, mag_offset_y, mag_offset_z);
report_compass();
return 0;
}
}
return 0;
}
*/
#ifdef OPTFLOW_ENABLED
static int8_t
setup_optflow(uint8_t argc, const Menu::arg *argv)
{
if (!strcmp_P(argv[1].str, PSTR("on"))) {
g.optflow_enabled = true;
init_optflow();
} else if (!strcmp_P(argv[1].str, PSTR("off"))) {
g.optflow_enabled = false;
//} else if(argv[1].i > 10){
// g.optflow_fov.set_and_save(argv[1].i);
// optflow.set_field_of_view(g.optflow_fov.get());
}else{
Serial.printf_P(PSTR("\nOptions:[on, off]\n"));
report_optflow();
return 0;
}
g.optflow_enabled.save();
report_optflow();
return 0;
}
#endif
void
default_log_bitmask()
{
// convenience macro for testing LOG_* and setting LOGBIT_*
#define LOGBIT(_s) (LOG_##_s ? MASK_LOG_##_s : 0)
g.log_bitmask =
LOGBIT(ATTITUDE_FAST) |
LOGBIT(ATTITUDE_MED) |
LOGBIT(GPS) |
LOGBIT(PM) |
LOGBIT(CTUN) |
LOGBIT(NTUN) |
LOGBIT(MODE) |
LOGBIT(RAW) |
LOGBIT(CMD) |
LOGBIT(CUR) |
LOGBIT(MOTORS) |
LOGBIT(OPTFLOW);
#undef LOGBIT
g.log_bitmask.save();
}
/***************************************************************************/
// CLI reports
/***************************************************************************/
static void report_batt_monitor()
{
Serial.printf_P(PSTR("\nBatt Mointor\n"));
print_divider();
if(g.battery_monitoring == 0) print_enabled(false);
if(g.battery_monitoring == 1) Serial.printf_P(PSTR("3 cells"));
if(g.battery_monitoring == 2) Serial.printf_P(PSTR("4 cells"));
if(g.battery_monitoring == 3) Serial.printf_P(PSTR("batt volts"));
if(g.battery_monitoring == 4) Serial.printf_P(PSTR("volts and cur"));
print_blanks(2);
}
static void report_wp(byte index = 255)
{
if(index == 255){
for(byte i = 0; i <= g.waypoint_total; i++){
struct Location temp = get_command_with_index(i);
print_wp(&temp, i);
}
}else{
struct Location temp = get_command_with_index(index);
print_wp(&temp, index);
}
}
static void report_sonar()
{
g.sonar_enabled.load();
Serial.printf_P(PSTR("Sonar\n"));
print_divider();
print_enabled(g.sonar_enabled.get());
print_blanks(2);
}
static void report_frame()
{
Serial.printf_P(PSTR("Frame\n"));
print_divider();
#if FRAME_CONFIG == QUAD_FRAME
Serial.printf_P(PSTR("Quad frame\n"));
#elif FRAME_CONFIG == TRI_FRAME
Serial.printf_P(PSTR("TRI frame\n"));
#elif FRAME_CONFIG == HEXA_FRAME
Serial.printf_P(PSTR("Hexa frame\n"));
#elif FRAME_CONFIG == Y6_FRAME
Serial.printf_P(PSTR("Y6 frame\n"));
#elif FRAME_CONFIG == OCTA_FRAME
Serial.printf_P(PSTR("Octa frame\n"));
#elif FRAME_CONFIG == HELI_FRAME
Serial.printf_P(PSTR("Heli frame\n"));
#endif
#if FRAME_CONFIG != HELI_FRAME
if(g.frame_orientation == X_FRAME)
Serial.printf_P(PSTR("X mode\n"));
else if(g.frame_orientation == PLUS_FRAME)
Serial.printf_P(PSTR("+ mode\n"));
else if(g.frame_orientation == V_FRAME)
Serial.printf_P(PSTR("V mode\n"));
#endif
print_blanks(2);
}
static void report_radio()
{
Serial.printf_P(PSTR("Radio\n"));
print_divider();
// radio
print_radio_values();
print_blanks(2);
}
/*
static void report_gains()
{
Serial.printf_P(PSTR("Gains\n"));
print_divider();
// Rate
Serial.printf_P(PSTR("Rate:\nroll:\n"));
print_PID(&g.pid_rate_roll);
Serial.printf_P(PSTR("pitch:\n"));
print_PID(&g.pid_rate_pitch);
Serial.printf_P(PSTR("yaw:\n"));
print_PID(&g.pid_rate_yaw);
// Stabilize
Serial.printf_P(PSTR("\nStabilize:\nroll:\n"));
print_PID(&g.pid_stabilize_roll);
Serial.printf_P(PSTR("pitch:\n"));
print_PID(&g.pid_stabilize_pitch);
Serial.printf_P(PSTR("yaw:\n"));
print_PID(&g.pid_stabilize_yaw);
//Serial.printf_P(PSTR("Stab D: %4.3f\n"), (float)g.stabilize_dampener);
//Serial.printf_P(PSTR("Yaw D: %4.3f\n\n"), (float)g.hold_yaw_dampener);
// Nav
Serial.printf_P(PSTR("Nav:\nlat:\n"));
print_PID(&g.pid_nav_lat);
Serial.printf_P(PSTR("long:\n"));
print_PID(&g.pid_nav_lon);
Serial.printf_P(PSTR("throttle:\n"));
print_PID(&g.pid_throttle);
print_blanks(2);
}
*/
/*static void report_xtrack()
{
Serial.printf_P(PSTR("XTrack\n"));
print_divider();
// radio
Serial.printf_P(PSTR("XTRACK: %4.2f\n"
"XTRACK angle: %d\n"
"PITCH_MAX: %ld"),
(float)g.crosstrack_gain,
(int)g.crosstrack_entry_angle,
(long)g.pitch_max);
print_blanks(2);
}
*/
/*static void report_throttle()
{
Serial.printf_P(PSTR("Throttle\n"));
print_divider();
Serial.printf_P(PSTR("min: %d\n"
"max: %d\n"
"cruise: %d\n"
"failsafe_enabled: %d\n"
"failsafe_value: %d"),
(int)g.throttle_min,
(int)g.throttle_max,
(int)g.throttle_cruise,
(int)g.throttle_fs_enabled,
(int)g.throttle_fs_value);
print_blanks(2);
}*/
static void report_imu()
{
Serial.printf_P(PSTR("IMU\n"));
print_divider();
print_gyro_offsets();
print_accel_offsets();
print_blanks(2);
}
static void report_compass()
{
Serial.printf_P(PSTR("Compass\n"));
print_divider();
print_enabled(g.compass_enabled);
// mag declination
Serial.printf_P(PSTR("Mag Dec: %4.4f\n"),
degrees(compass.get_declination()));
Vector3f offsets = compass.get_offsets();
// mag offsets
Serial.printf_P(PSTR("Mag offsets: %4.4f, %4.4f, %4.4f"),
offsets.x,
offsets.y,
offsets.z);
print_blanks(2);
}
static void report_flight_modes()
{
Serial.printf_P(PSTR("Flight modes\n"));
print_divider();
for(int i = 0; i < 6; i++ ){
print_switch(i, flight_modes[i]);
}
print_blanks(2);
}
#ifdef OPTFLOW_ENABLED
void report_optflow()
{
Serial.printf_P(PSTR("OptFlow\n"));
print_divider();
print_enabled(g.optflow_enabled);
// field of view
//Serial.printf_P(PSTR("FOV: %4.0f\n"),
// degrees(g.optflow_fov));
print_blanks(2);
}
#endif
#if FRAME_CONFIG == HELI_FRAME
static void report_heli()
{
Serial.printf_P(PSTR("Heli\n"));
print_divider();
// main servo settings
Serial.printf_P(PSTR("Servo \tpos \tmin \tmax \trev\n"));
Serial.printf_P(PSTR("1:\t%d \t%d \t%d \t%d\n"),(int)g.heli_servo1_pos, (int)g.heli_servo_1.radio_min, (int)g.heli_servo_1.radio_max, (int)g.heli_servo_1.get_reverse());
Serial.printf_P(PSTR("2:\t%d \t%d \t%d \t%d\n"),(int)g.heli_servo2_pos, (int)g.heli_servo_2.radio_min, (int)g.heli_servo_2.radio_max, (int)g.heli_servo_2.get_reverse());
Serial.printf_P(PSTR("3:\t%d \t%d \t%d \t%d\n"),(int)g.heli_servo3_pos, (int)g.heli_servo_3.radio_min, (int)g.heli_servo_3.radio_max, (int)g.heli_servo_3.get_reverse());
Serial.printf_P(PSTR("tail:\t\t%d \t%d \t%d\n"), (int)g.heli_servo_4.radio_min, (int)g.heli_servo_4.radio_max, (int)g.heli_servo_4.get_reverse());
Serial.printf_P(PSTR("roll max: \t%d\n"), (int)g.heli_roll_max);
Serial.printf_P(PSTR("pitch max: \t%d\n"), (int)g.heli_pitch_max);
Serial.printf_P(PSTR("coll min:\t%d\t mid:%d\t max:%d\n"),(int)g.heli_coll_min, (int)g.heli_coll_mid, (int)g.heli_coll_max);
print_blanks(2);
}
static void report_gyro()
{
Serial.printf_P(PSTR("External Gyro:\n"));
print_divider();
print_enabled( g.heli_ext_gyro_enabled );
if( g.heli_ext_gyro_enabled )
Serial.printf_P(PSTR("gain: %d"),(int)g.heli_ext_gyro_gain);
print_blanks(2);
}
#endif // FRAME_CONFIG == HELI_FRAME
/***************************************************************************/
// CLI utilities
/***************************************************************************/
/*static void
print_PID(PID * pid)
{
Serial.printf_P(PSTR("P: %4.2f, I:%4.2f, D:%4.2f, IMAX:%ld\n"),
pid->kP(),
pid->kI(),
pid->kD(),
(long)pid->imax());
}
*/
static void
print_radio_values()
{
Serial.printf_P(PSTR("CH1: %d | %d\n"), (int)g.rc_1.radio_min, (int)g.rc_1.radio_max);
Serial.printf_P(PSTR("CH2: %d | %d\n"), (int)g.rc_2.radio_min, (int)g.rc_2.radio_max);
Serial.printf_P(PSTR("CH3: %d | %d\n"), (int)g.rc_3.radio_min, (int)g.rc_3.radio_max);
Serial.printf_P(PSTR("CH4: %d | %d\n"), (int)g.rc_4.radio_min, (int)g.rc_4.radio_max);
Serial.printf_P(PSTR("CH5: %d | %d\n"), (int)g.rc_5.radio_min, (int)g.rc_5.radio_max);
Serial.printf_P(PSTR("CH6: %d | %d\n"), (int)g.rc_6.radio_min, (int)g.rc_6.radio_max);
Serial.printf_P(PSTR("CH7: %d | %d\n"), (int)g.rc_7.radio_min, (int)g.rc_7.radio_max);
//Serial.printf_P(PSTR("CH8: %d | %d\n"), (int)g.rc_8.radio_min, (int)g.rc_8.radio_max);
}
static void
print_switch(byte p, byte m)
{
Serial.printf_P(PSTR("Pos %d: "),p);
Serial.println(flight_mode_strings[m]);
}
static void
print_done()
{
Serial.printf_P(PSTR("\nSaved Settings\n\n"));
}
// read at 50Hz
static bool
radio_input_switch(void)
{
static int8_t bouncer = 0;
if (int16_t(g.rc_1.radio_in - g.rc_1.radio_trim) > 100) {
bouncer = 10;
}
if (int16_t(g.rc_1.radio_in - g.rc_1.radio_trim) < -100) {
bouncer = -10;
}
if (bouncer >0) {
bouncer --;
}
if (bouncer <0) {
bouncer ++;
}
if (bouncer == 1 || bouncer == -1) {
return bouncer;
}else{
return 0;
}
}
static void zero_eeprom(void)
{
byte b = 0;
Serial.printf_P(PSTR("\nErasing EEPROM\n"));
for (int i = 0; i < EEPROM_MAX_ADDR; i++) {
eeprom_write_byte((uint8_t *) i, b);
}
Serial.printf_P(PSTR("done\n"));
}
static void
print_accel_offsets(void)
{
Serial.printf_P(PSTR("Accel offsets: %4.2f, %4.2f, %4.2f\n"),
(float)imu.ax(),
(float)imu.ay(),
(float)imu.az());
}
static void
print_gyro_offsets(void)
{
Serial.printf_P(PSTR("Gyro offsets: %4.2f, %4.2f, %4.2f\n"),
(float)imu.gx(),
(float)imu.gy(),
(float)imu.gz());
}
#if FRAME_CONFIG == HELI_FRAME
static RC_Channel *
heli_get_servo(int servo_num){
if( servo_num == CH_1 )
return &g.heli_servo_1;
if( servo_num == CH_2 )
return &g.heli_servo_2;
if( servo_num == CH_3 )
return &g.heli_servo_3;
if( servo_num == CH_4 )
return &g.heli_servo_4;
return NULL;
}
// Used to read integer values from the serial port
static int read_num_from_serial() {
byte index = 0;
byte timeout = 0;
char data[5] = "";
do {
if (Serial.available() == 0) {
delay(10);
timeout++;
}else{
data[index] = Serial.read();
timeout = 0;
index++;
}
}while (timeout < 5 && index < 5);
return atoi(data);
}
#endif
#endif // CLI_ENABLED
static void
print_blanks(int num)
{
while(num > 0){
num--;
Serial.println("");
}
}
static void
print_divider(void)
{
for (int i = 0; i < 40; i++) {
Serial.print("-");
}
Serial.println("");
}
static void print_enabled(boolean b)
{
if(b)
Serial.printf_P(PSTR("en"));
else
Serial.printf_P(PSTR("dis"));
Serial.printf_P(PSTR("abled\n"));
}
static void
init_esc()
{
g.esc_calibrate.set_and_save(0);
while(1){
read_radio();
delay(100);
dancing_light();
APM_RC.OutputCh(CH_1, g.rc_3.radio_in);
APM_RC.OutputCh(CH_2, g.rc_3.radio_in);
APM_RC.OutputCh(CH_3, g.rc_3.radio_in);
APM_RC.OutputCh(CH_4, g.rc_3.radio_in);
APM_RC.OutputCh(CH_7, g.rc_3.radio_in);
APM_RC.OutputCh(CH_8, g.rc_3.radio_in);
#if FRAME_CONFIG == OCTA_FRAME
APM_RC.OutputCh(CH_10, g.rc_3.radio_in);
APM_RC.OutputCh(CH_11, g.rc_3.radio_in);
#endif
}
}
static void print_wp(struct Location *cmd, byte index)
{
Serial.printf_P(PSTR("command #: %d id:%d op:%d p1:%d p2:%ld p3:%ld p4:%ld \n"),
(int)index,
(int)cmd->id,
(int)cmd->options,
(int)cmd->p1,
cmd->alt,
cmd->lat,
cmd->lng);
}
static void report_gps()
{
Serial.printf_P(PSTR("\nGPS\n"));
print_divider();
print_enabled(GPS_enabled);
print_blanks(2);
}
static void report_version()
{
Serial.printf_P(PSTR("FW Version %d\n"),(int)g.format_version.get());
print_divider();
print_blanks(2);
}