ardupilot/ArduCopter/land_detector.cpp
dgrat 41661f815f AP_Math: Replace the pythagorous* functions with a variadic template
The new function can deal with a variable number of function parameters.
Additionally, I renamed the functions to norm(), because this is the
standard name used in several other projects.
2016-05-10 11:41:26 -03:00

157 lines
5.6 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include "Copter.h"
// counter to verify landings
static uint32_t land_detector_count = 0;
// run land and crash detectors
// called at MAIN_LOOP_RATE
void Copter::update_land_and_crash_detectors()
{
// update 1hz filtered acceleration
Vector3f accel_ef = ahrs.get_accel_ef_blended();
accel_ef.z += GRAVITY_MSS;
land_accel_ef_filter.apply(accel_ef, MAIN_LOOP_SECONDS);
update_land_detector();
#if PARACHUTE == ENABLED
// check parachute
parachute_check();
#endif
crash_check();
}
// update_land_detector - checks if we have landed and updates the ap.land_complete flag
// called at MAIN_LOOP_RATE
void Copter::update_land_detector()
{
// land detector can not use the following sensors because they are unreliable during landing
// barometer altitude : ground effect can cause errors larger than 4m
// EKF vertical velocity or altitude : poor barometer and large acceleration from ground impact
// earth frame angle or angle error : landing on an uneven surface will force the airframe to match the ground angle
// gyro output : on uneven surface the airframe may rock back an forth after landing
// range finder : tend to be problematic at very short distances
// input throttle : in slow land the input throttle may be only slightly less than hover
if (!motors.armed()) {
// if disarmed, always landed.
set_land_complete(true);
} else if (ap.land_complete) {
#if FRAME_CONFIG == HELI_FRAME
// if rotor speed and collective pitch are high then clear landing flag
if (motors.get_throttle() > get_non_takeoff_throttle() && motors.rotor_runup_complete()) {
#else
// if throttle output is high then clear landing flag
if (motors.get_throttle() > get_non_takeoff_throttle()) {
#endif
set_land_complete(false);
}
} else {
#if FRAME_CONFIG == HELI_FRAME
// check that collective pitch is on lower limit (should be constrained by LAND_COL_MIN)
bool motor_at_lower_limit = motors.limit.throttle_lower;
#else
// check that the average throttle output is near minimum (less than 12.5% hover throttle)
bool motor_at_lower_limit = motors.limit.throttle_lower && motors.is_throttle_mix_min();
#endif
// check that the airframe is not accelerating (not falling or breaking after fast forward flight)
bool accel_stationary = (land_accel_ef_filter.get().length() <= LAND_DETECTOR_ACCEL_MAX);
if (motor_at_lower_limit && accel_stationary) {
// landed criteria met - increment the counter and check if we've triggered
if( land_detector_count < ((float)LAND_DETECTOR_TRIGGER_SEC)*MAIN_LOOP_RATE) {
land_detector_count++;
} else {
set_land_complete(true);
}
} else {
// we've sensed movement up or down so reset land_detector
land_detector_count = 0;
}
}
set_land_complete_maybe(ap.land_complete || (land_detector_count >= LAND_DETECTOR_MAYBE_TRIGGER_SEC*MAIN_LOOP_RATE));
}
void Copter::set_land_complete(bool b)
{
// if no change, exit immediately
if( ap.land_complete == b )
return;
land_detector_count = 0;
if(b){
Log_Write_Event(DATA_LAND_COMPLETE);
} else {
Log_Write_Event(DATA_NOT_LANDED);
}
ap.land_complete = b;
}
// set land complete maybe flag
void Copter::set_land_complete_maybe(bool b)
{
// if no change, exit immediately
if (ap.land_complete_maybe == b)
return;
if (b) {
Log_Write_Event(DATA_LAND_COMPLETE_MAYBE);
}
ap.land_complete_maybe = b;
}
// update_throttle_thr_mix - sets motors throttle_low_comp value depending upon vehicle state
// low values favour pilot/autopilot throttle over attitude control, high values favour attitude control over throttle
// has no effect when throttle is above hover throttle
void Copter::update_throttle_thr_mix()
{
#if FRAME_CONFIG != HELI_FRAME
// if disarmed or landed prioritise throttle
if(!motors.armed() || ap.land_complete) {
motors.set_throttle_mix_min();
return;
}
if (mode_has_manual_throttle(control_mode)) {
// manual throttle
if(channel_throttle->get_control_in() <= 0) {
motors.set_throttle_mix_min();
} else {
motors.set_throttle_mix_mid();
}
} else {
// autopilot controlled throttle
// check for aggressive flight requests - requested roll or pitch angle below 15 degrees
const Vector3f angle_target = attitude_control.get_att_target_euler_cd();
bool large_angle_request = (norm(angle_target.x, angle_target.y) > 1500.0f);
// check for large external disturbance - angle error over 30 degrees
const Vector3f angle_error = attitude_control.get_att_error_rot_vec_cd();
bool large_angle_error = (norm(angle_error.x, angle_error.y) > 3000.0f);
// check for large acceleration - falling or high turbulence
Vector3f accel_ef = ahrs.get_accel_ef_blended();
accel_ef.z += GRAVITY_MSS;
bool accel_moving = (accel_ef.length() > 3.0f);
// check for requested decent
bool descent_not_demanded = pos_control.get_desired_velocity().z >= 0.0f;
if ( large_angle_request || large_angle_error || accel_moving || descent_not_demanded) {
motors.set_throttle_mix_max();
} else {
motors.set_throttle_mix_min();
}
}
#endif
}