5
0
mirror of https://github.com/ArduPilot/ardupilot synced 2025-01-17 14:18:31 -04:00
ardupilot/ArduPlane/Log.cpp
2022-08-02 10:52:52 +10:00

542 lines
20 KiB
C++

#include "Plane.h"
#if LOGGING_ENABLED == ENABLED
// Write an attitude packet
void Plane::Log_Write_Attitude(void)
{
Vector3f targets; // Package up the targets into a vector for commonality with Copter usage of Log_Wrote_Attitude
targets.x = nav_roll_cd;
targets.y = nav_pitch_cd;
targets.z = 0; //Plane does not have the concept of navyaw. This is a placeholder.
#if HAL_QUADPLANE_ENABLED
if (quadplane.show_vtol_view()) {
// we need the attitude targets from the AC_AttitudeControl controller, as they
// account for the acceleration limits.
// Also, for bodyframe roll input types, _attitude_target_euler_angle is not maintained
// since Euler angles are not used and it is a waste of cpu to compute them at the loop rate.
// Get them from the quaternion instead:
quadplane.attitude_control->get_attitude_target_quat().to_euler(targets.x, targets.y, targets.z);
targets *= degrees(100.0f);
quadplane.ahrs_view->Write_AttitudeView(targets);
} else
#endif
{
ahrs.Write_Attitude(targets);
}
#if HAL_QUADPLANE_ENABLED
if (AP_HAL::millis() - quadplane.last_att_control_ms < 100) {
// log quadplane PIDs separately from fixed wing PIDs
logger.Write_PID(LOG_PIQR_MSG, quadplane.attitude_control->get_rate_roll_pid().get_pid_info());
logger.Write_PID(LOG_PIQP_MSG, quadplane.attitude_control->get_rate_pitch_pid().get_pid_info());
logger.Write_PID(LOG_PIQY_MSG, quadplane.attitude_control->get_rate_yaw_pid().get_pid_info());
logger.Write_PID(LOG_PIQA_MSG, quadplane.pos_control->get_accel_z_pid().get_pid_info() );
}
if (quadplane.in_vtol_mode() && quadplane.pos_control->is_active_xy()) {
logger.Write_PID(LOG_PIDN_MSG, quadplane.pos_control->get_vel_xy_pid().get_pid_info_x());
logger.Write_PID(LOG_PIDE_MSG, quadplane.pos_control->get_vel_xy_pid().get_pid_info_y());
}
#endif
logger.Write_PID(LOG_PIDR_MSG, rollController.get_pid_info());
logger.Write_PID(LOG_PIDP_MSG, pitchController.get_pid_info());
logger.Write_PID(LOG_PIDY_MSG, yawController.get_pid_info());
logger.Write_PID(LOG_PIDS_MSG, steerController.get_pid_info());
AP::ahrs().Log_Write();
}
// do fast logging for plane
void Plane::Log_Write_FullRate(void)
{
// MASK_LOG_ATTITUDE_FULLRATE logs at 400Hz, MASK_LOG_ATTITUDE_FAST at 25Hz, MASK_LOG_ATTIUDE_MED logs at 10Hz
// highest rate selected wins
if (should_log(MASK_LOG_ATTITUDE_FULLRATE)) {
Log_Write_Attitude();
}
}
struct PACKED log_Control_Tuning {
LOG_PACKET_HEADER;
uint64_t time_us;
int16_t nav_roll_cd;
int16_t roll;
int16_t nav_pitch_cd;
int16_t pitch;
float throttle_out;
float rudder_out;
float throttle_dem;
float airspeed_estimate;
float synthetic_airspeed;
float EAS2TAS;
int32_t groundspeed_undershoot;
};
// Write a control tuning packet. Total length : 22 bytes
void Plane::Log_Write_Control_Tuning()
{
float est_airspeed = 0;
ahrs.airspeed_estimate(est_airspeed);
float synthetic_airspeed;
if (!ahrs.synthetic_airspeed(synthetic_airspeed)) {
synthetic_airspeed = logger.quiet_nan();
}
struct log_Control_Tuning pkt = {
LOG_PACKET_HEADER_INIT(LOG_CTUN_MSG),
time_us : AP_HAL::micros64(),
nav_roll_cd : (int16_t)nav_roll_cd,
roll : (int16_t)ahrs.roll_sensor,
nav_pitch_cd : (int16_t)nav_pitch_cd,
pitch : (int16_t)ahrs.pitch_sensor,
throttle_out : SRV_Channels::get_output_scaled(SRV_Channel::k_throttle),
rudder_out : SRV_Channels::get_output_scaled(SRV_Channel::k_rudder),
throttle_dem : TECS_controller.get_throttle_demand(),
airspeed_estimate : est_airspeed,
synthetic_airspeed : synthetic_airspeed,
EAS2TAS : ahrs.get_EAS2TAS(),
groundspeed_undershoot : groundspeed_undershoot,
};
logger.WriteBlock(&pkt, sizeof(pkt));
}
struct PACKED log_OFG_Guided {
LOG_PACKET_HEADER;
uint64_t time_us;
float target_airspeed_cm;
float target_airspeed_accel;
float target_alt;
float target_alt_accel;
uint8_t target_alt_frame;
float target_heading;
float target_heading_limit;
};
// Write a OFG Guided packet.
void Plane::Log_Write_OFG_Guided()
{
#if OFFBOARD_GUIDED == ENABLED
struct log_OFG_Guided pkt = {
LOG_PACKET_HEADER_INIT(LOG_OFG_MSG),
time_us : AP_HAL::micros64(),
target_airspeed_cm : (float)guided_state.target_airspeed_cm*(float)0.01,
target_airspeed_accel : guided_state.target_airspeed_accel,
target_alt : guided_state.target_alt,
target_alt_accel : guided_state.target_alt_accel,
target_alt_frame : guided_state.target_alt_frame,
target_heading : guided_state.target_heading,
target_heading_limit : guided_state.target_heading_accel_limit
};
logger.WriteBlock(&pkt, sizeof(pkt));
#endif
}
struct PACKED log_Nav_Tuning {
LOG_PACKET_HEADER;
uint64_t time_us;
float wp_distance;
int16_t target_bearing_cd;
int16_t nav_bearing_cd;
int16_t altitude_error_cm;
float xtrack_error;
float xtrack_error_i;
float airspeed_error;
int32_t target_lat;
int32_t target_lng;
int32_t target_alt;
int32_t target_airspeed;
};
// Write a navigation tuning packet
void Plane::Log_Write_Nav_Tuning()
{
struct log_Nav_Tuning pkt = {
LOG_PACKET_HEADER_INIT(LOG_NTUN_MSG),
time_us : AP_HAL::micros64(),
wp_distance : auto_state.wp_distance,
target_bearing_cd : (int16_t)nav_controller->target_bearing_cd(),
nav_bearing_cd : (int16_t)nav_controller->nav_bearing_cd(),
altitude_error_cm : (int16_t)altitude_error_cm,
xtrack_error : nav_controller->crosstrack_error(),
xtrack_error_i : nav_controller->crosstrack_error_integrator(),
airspeed_error : airspeed_error,
target_lat : next_WP_loc.lat,
target_lng : next_WP_loc.lng,
target_alt : next_WP_loc.alt,
target_airspeed : target_airspeed_cm,
};
logger.WriteBlock(&pkt, sizeof(pkt));
}
struct PACKED log_Status {
LOG_PACKET_HEADER;
uint64_t time_us;
uint8_t is_flying;
float is_flying_probability;
uint8_t armed;
uint8_t safety;
bool is_crashed;
bool is_still;
uint8_t stage;
bool impact;
};
void Plane::Log_Write_Status()
{
struct log_Status pkt = {
LOG_PACKET_HEADER_INIT(LOG_STATUS_MSG)
,time_us : AP_HAL::micros64()
,is_flying : is_flying()
,is_flying_probability : isFlyingProbability
,armed : hal.util->get_soft_armed()
,safety : static_cast<uint8_t>(hal.util->safety_switch_state())
,is_crashed : crash_state.is_crashed
,is_still : AP::ins().is_still()
,stage : static_cast<uint8_t>(flight_stage)
,impact : crash_state.impact_detected
};
logger.WriteBlock(&pkt, sizeof(pkt));
}
struct PACKED log_AETR {
LOG_PACKET_HEADER;
uint64_t time_us;
float aileron;
float elevator;
float throttle;
float rudder;
float flap;
float speed_scaler;
};
void Plane::Log_Write_AETR()
{
struct log_AETR pkt = {
LOG_PACKET_HEADER_INIT(LOG_AETR_MSG)
,time_us : AP_HAL::micros64()
,aileron : SRV_Channels::get_output_scaled(SRV_Channel::k_aileron)
,elevator : SRV_Channels::get_output_scaled(SRV_Channel::k_elevator)
,throttle : SRV_Channels::get_output_scaled(SRV_Channel::k_throttle)
,rudder : SRV_Channels::get_output_scaled(SRV_Channel::k_rudder)
,flap : SRV_Channels::get_slew_limited_output_scaled(SRV_Channel::k_flap_auto)
,speed_scaler : get_speed_scaler(),
};
logger.WriteBlock(&pkt, sizeof(pkt));
}
void Plane::Log_Write_RC(void)
{
logger.Write_RCIN();
logger.Write_RCOUT();
if (rssi.enabled()) {
logger.Write_RSSI();
}
Log_Write_AETR();
}
void Plane::Log_Write_Guided(void)
{
#if OFFBOARD_GUIDED == ENABLED
if (control_mode != &mode_guided) {
return;
}
if (guided_state.target_heading_time_ms != 0) {
logger.Write_PID(LOG_PIDG_MSG, g2.guidedHeading.get_pid_info());
}
if ( is_positive(guided_state.target_alt) || is_positive(guided_state.target_airspeed_cm) ) {
Log_Write_OFG_Guided();
}
#endif // OFFBOARD_GUIDED == ENABLED
}
// incoming-to-vehicle mavlink COMMAND_INT can be logged
struct PACKED log_CMDI {
LOG_PACKET_HEADER;
uint64_t TimeUS;
uint16_t CId;
uint8_t TSys;
uint8_t TCmp;
uint8_t cur;
uint8_t cont;
float Prm1;
float Prm2;
float Prm3;
float Prm4;
int32_t Lat;
int32_t Lng;
float Alt;
uint8_t F;
};
// type and unit information can be found in
// libraries/AP_Logger/Logstructure.h; search for "log_Units" for
// units and "Format characters" for field type information
const struct LogStructure Plane::log_structure[] = {
LOG_COMMON_STRUCTURES,
// @LoggerMessage: CTUN
// @Description: Control Tuning information
// @Field: TimeUS: Time since system startup
// @Field: NavRoll: desired roll
// @Field: Roll: achieved roll
// @Field: NavPitch: desired pitch
// @Field: Pitch: achieved pitch
// @Field: ThO: scaled output throttle
// @Field: RdrOut: scaled output rudder
// @Field: ThD: demanded speed-height-controller throttle
// @Field: As: airspeed estimate (or measurement if airspeed sensor healthy and ARSPD_USE>0)
// @Field: SAs: synthetic airspeed measurement derived from non-airspeed sensors, NaN if not available
// @Field: E2T: equivalent to true airspeed ratio
// @Field: GU: groundspeed undershoot when flying with minimum groundspeed
{ LOG_CTUN_MSG, sizeof(log_Control_Tuning),
"CTUN", "Qccccffffffi", "TimeUS,NavRoll,Roll,NavPitch,Pitch,ThO,RdrOut,ThD,As,SAs,E2T,GU", "sdddd---nn-n", "FBBBB---00-B" , true },
// @LoggerMessage: NTUN
// @Description: Navigation Tuning information - e.g. vehicle destination
// @Field: TimeUS: Time since system startup
// @Field: Dist: distance to the current navigation waypoint
// @Field: TBrg: bearing to the current navigation waypoint
// @Field: NavBrg: the vehicle's desired heading
// @Field: AltErr: difference between current vehicle height and target height
// @Field: XT: the vehicle's current distance from the current travel segment
// @Field: XTi: integration of the vehicle's crosstrack error
// @Field: AspdE: difference between vehicle's airspeed and desired airspeed
// @Field: TLat: target latitude
// @Field: TLng: target longitude
// @Field: TAlt: target altitude
// @Field: TAspd: target airspeed
{ LOG_NTUN_MSG, sizeof(log_Nav_Tuning),
"NTUN", "QfcccfffLLii", "TimeUS,Dist,TBrg,NavBrg,AltErr,XT,XTi,AspdE,TLat,TLng,TAlt,TAspd", "smddmmmnDUmn", "F0BBB0B0GGBB" , true },
// @LoggerMessage: ATRP
// @Description: Plane AutoTune
// @Vehicles: Plane
// @Field: TimeUS: Time since system startup
// @Field: Axis: tuning axis
// @Field: State: tuning state
// @Field: Sur: control surface deflection
// @Field: PSlew: P slew rate
// @Field: DSlew: D slew rate
// @Field: FF0: FF value single sample
// @Field: FF: FF value
// @Field: P: P value
// @Field: I: I value
// @Field: D: D value
// @Field: Action: action taken
// @Field: RMAX: Rate maximum
// @Field: TAU: time constant
{ LOG_ATRP_MSG, sizeof(AP_AutoTune::log_ATRP),
"ATRP", "QBBffffffffBff", "TimeUS,Axis,State,Sur,PSlew,DSlew,FF0,FF,P,I,D,Action,RMAX,TAU", "s#-dkk------ks", "F--00000000-00" , true },
// @LoggerMessage: STAT
// @Description: Current status of the aircraft
// @Field: TimeUS: Time since system startup
// @Field: isFlying: True if aircraft is probably flying
// @Field: isFlyProb: Probabilty that the aircraft is flying
// @Field: Armed: Arm status of the aircraft
// @Field: Safety: State of the safety switch
// @Field: Crash: True if crash is detected
// @Field: Still: True when vehicle is not moving in any axis
// @Field: Stage: Current stage of the flight
// @Field: Hit: True if impact is detected
{ LOG_STATUS_MSG, sizeof(log_Status),
"STAT", "QBfBBBBBB", "TimeUS,isFlying,isFlyProb,Armed,Safety,Crash,Still,Stage,Hit", "s--------", "F--------" , true },
// @LoggerMessage: QTUN
// @Description: QuadPlane vertical tuning message
// @Field: TimeUS: Time since system startup
// @Field: ThI: throttle input
// @Field: ABst: angle boost
// @Field: ThO: throttle output
// @Field: ThH: calculated hover throttle
// @Field: DAlt: desired altitude
// @Field: Alt: achieved altitude
// @Field: BAlt: barometric altitude
// @Field: DCRt: desired climb rate
// @Field: CRt: climb rate
// @Field: TMix: transition throttle mix value
// @Field: Sscl: speed scalar for tailsitter control surfaces
// @Field: Trn: Transistion state
// @Field: Ast: Q assist active state
#if HAL_QUADPLANE_ENABLED
{ LOG_QTUN_MSG, sizeof(QuadPlane::log_QControl_Tuning),
"QTUN", "QffffffeccffBB", "TimeUS,ThI,ABst,ThO,ThH,DAlt,Alt,BAlt,DCRt,CRt,TMix,Sscl,Trn,Ast", "s----mmmnn----", "F----00000-0--" , true },
#endif
// @LoggerMessage: PIQR,PIQP,PIQY,PIQA
// @Description: QuadPlane Proportional/Integral/Derivative gain values for Roll/Pitch/Yaw/Z
// @Field: TimeUS: Time since system startup
// @Field: Tar: desired value
// @Field: Act: achieved value
// @Field: Err: error between target and achieved
// @Field: P: proportional part of PID
// @Field: I: integral part of PID
// @Field: D: derivative part of PID
// @Field: FF: controller feed-forward portion of response
// @Field: Dmod: scaler applied to D gain to reduce limit cycling
// @Field: SRate: slew rate
// @Field: Limit: 1 if I term is limited due to output saturation
{ LOG_PIQR_MSG, sizeof(log_PID),
"PIQR", PID_FMT, PID_LABELS, PID_UNITS, PID_MULTS , true },
{ LOG_PIQP_MSG, sizeof(log_PID),
"PIQP", PID_FMT, PID_LABELS, PID_UNITS, PID_MULTS , true },
{ LOG_PIQY_MSG, sizeof(log_PID),
"PIQY", PID_FMT, PID_LABELS, PID_UNITS, PID_MULTS , true },
{ LOG_PIQA_MSG, sizeof(log_PID),
"PIQA", PID_FMT, PID_LABELS, PID_UNITS, PID_MULTS , true },
// @LoggerMessage: PIDG
// @Description: Plane Proportional/Integral/Derivative gain values for Heading when using COMMAND_INT control.
// @Field: TimeUS: Time since system startup
// @Field: Tar: desired value
// @Field: Act: achieved value
// @Field: Err: error between target and achieved
// @Field: P: proportional part of PID
// @Field: I: integral part of PID
// @Field: D: derivative part of PID
// @Field: FF: controller feed-forward portion of response
// @Field: Dmod: scaler applied to D gain to reduce limit cycling
// @Field: SRate: slew rate
// @Field: Limit: 1 if I term is limited due to output saturation
{ LOG_PIDG_MSG, sizeof(log_PID),
"PIDG", PID_FMT, PID_LABELS, PID_UNITS, PID_MULTS , true },
// @LoggerMessage: AETR
// @Description: Normalised pre-mixer control surface outputs
// @Field: TimeUS: Time since system startup
// @Field: Ail: Pre-mixer value for aileron output (between -4500 to 4500)
// @Field: Elev: Pre-mixer value for elevator output (between -4500 to 4500)
// @Field: Thr: Pre-mixer value for throttle output (between -4500 to 4500)
// @Field: Rudd: Pre-mixer value for rudder output (between -4500 to 4500)
// @Field: Flap: Pre-mixer value for flaps output (between -4500 to 4500)
// @Field: SS: Surface movement / airspeed scaling value
{ LOG_AETR_MSG, sizeof(log_AETR),
"AETR", "Qffffff", "TimeUS,Ail,Elev,Thr,Rudd,Flap,SS", "s------", "F------" , true },
// @LoggerMessage: OFG
// @Description: OFfboard-Guided - an advanced version of GUIDED for companion computers that includes rate/s.
// @Field: TimeUS: Time since system startup
// @Field: Arsp: target airspeed cm
// @Field: ArspA: target airspeed accel
// @Field: Alt: target alt
// @Field: AltA: target alt accel
// @Field: AltF: target alt frame
// @Field: Hdg: target heading
// @Field: HdgA: target heading lim
{ LOG_OFG_MSG, sizeof(log_OFG_Guided),
"OFG", "QffffBff", "TimeUS,Arsp,ArspA,Alt,AltA,AltF,Hdg,HdgA", "s-------", "F-------" , true },
// @LoggerMessage: CMDI
// @Description: Generic CommandInt message logger(CMDI)
// @Field: TimeUS: Time since system startup
// @Field: CId: command id
// @Field: TSys: target system
// @Field: TCmp: target component
// @Field: cur: current
// @Field: cont: autocontinue
// @Field: Prm1: parameter 1
// @Field: Prm2: parameter 2
// @Field: Prm3: parameter 3
// @Field: Prm4: parameter 4
// @Field: Lat: target latitude
// @Field: Lng: target longitude
// @Field: Alt: target altitude
// @Field: F: frame
{ LOG_CMDI_MSG, sizeof(log_CMDI),
"CMDI", "QHBBBBffffiifB", "TimeUS,CId,TSys,TCmp,cur,cont,Prm1,Prm2,Prm3,Prm4,Lat,Lng,Alt,F", "s---------DUm-", "F---------GGB-" },
// these next three are same format as log_CMDI just each a different name for Heading,Speed and Alt COMMAND_INTs
{ LOG_CMDS_MSG, sizeof(log_CMDI),
"CMDS", "QHBBBBffffiifB", "TimeUS,CId,TSys,TCmp,cur,cont,Prm1,Prm2,Prm3,Prm4,Lat,Lng,Alt,F", "s---------DUm-", "F---------GGB-" },
{ LOG_CMDA_MSG, sizeof(log_CMDI),
"CMDA", "QHBBBBffffiifB", "TimeUS,CId,TSys,TCmp,cur,cont,Prm1,Prm2,Prm3,Prm4,Lat,Lng,Alt,F", "s---------DUm-", "F---------GGB-" },
{ LOG_CMDH_MSG, sizeof(log_CMDI),
"CMDH", "QHBBBBffffiifB", "TimeUS,CId,TSys,TCmp,cur,cont,Prm1,Prm2,Prm3,Prm4,Lat,Lng,Alt,F", "s---------DUm-", "F---------GGB-" },
};
// Write a COMMAND INT packet.
void Plane::Log_Write_MavCmdI(const mavlink_command_int_t &mav_cmd)
{
struct log_CMDI pkt = {
LOG_PACKET_HEADER_INIT(LOG_CMDI_MSG),
TimeUS:AP_HAL::micros64(),
CId: mav_cmd.command,
TSys: mav_cmd.target_system,
TCmp: mav_cmd.target_component,
cur: mav_cmd.current,
cont: mav_cmd.autocontinue,
Prm1: mav_cmd.param1,
Prm2: mav_cmd.param2,
Prm3: mav_cmd.param3,
Prm4: mav_cmd.param4,
Lat: mav_cmd.x,
Lng: mav_cmd.y,
Alt: mav_cmd.z,
F: mav_cmd.frame
};
// rather than have 4 different functions for these similar outputs, we just create it as a CMDI and rename it here
#if OFFBOARD_GUIDED == ENABLED
if (mav_cmd.command == MAV_CMD_GUIDED_CHANGE_SPEED) {
pkt.msgid = LOG_CMDS_MSG;
} else if (mav_cmd.command == MAV_CMD_GUIDED_CHANGE_ALTITUDE) {
pkt.msgid = LOG_CMDA_MSG;
} else if (mav_cmd.command == MAV_CMD_GUIDED_CHANGE_HEADING) {
pkt.msgid = LOG_CMDH_MSG;
}
#endif
//normally pkt.msgid = LOG_CMDI_MSG
logger.WriteBlock(&pkt, sizeof(pkt));
}
void Plane::Log_Write_Vehicle_Startup_Messages()
{
// only 200(?) bytes are guaranteed by AP_Logger
#if HAL_QUADPLANE_ENABLED
if (quadplane.initialised) {
char frame_and_type_string[30];
quadplane.motors->get_frame_and_type_string(frame_and_type_string, ARRAY_SIZE(frame_and_type_string));
logger.Write_MessageF("QuadPlane %s", frame_and_type_string);
}
#endif
logger.Write_Mode(control_mode->mode_number(), control_mode_reason);
ahrs.Log_Write_Home_And_Origin();
gps.Write_AP_Logger_Log_Startup_messages();
}
/*
initialise logging subsystem
*/
void Plane::log_init(void)
{
logger.Init(log_structure, ARRAY_SIZE(log_structure));
}
#else // LOGGING_ENABLED
void Plane::Log_Write_Attitude(void) {}
void Plane::Log_Write_Fast(void) {}
void Plane::Log_Write_Control_Tuning() {}
void Plane::Log_Write_OFG_Guided() {}
void Plane::Log_Write_Nav_Tuning() {}
void Plane::Log_Write_Status() {}
void Plane::Log_Write_Guided(void) {}
void Plane::Log_Write_MavCmdI(const mavlink_command_int_t &packet) {}
void Plane::Log_Write_RC(void) {}
void Plane::Log_Write_Vehicle_Startup_Messages() {}
void Plane::log_init(void) {}
#endif // LOGGING_ENABLED