mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-04 23:18:28 -04:00
538 lines
19 KiB
C++
538 lines
19 KiB
C++
#include "Blimp.h"
|
|
|
|
/*
|
|
* High level calls to set and update flight modes logic for individual
|
|
* flight modes is in control_acro.cpp, control_stabilize.cpp, etc
|
|
*/
|
|
|
|
/*
|
|
constructor for Mode object
|
|
*/
|
|
Mode::Mode(void) :
|
|
g(blimp.g),
|
|
g2(blimp.g2),
|
|
// wp_nav(blimp.wp_nav),
|
|
// loiter_nav(blimp.loiter_nav),
|
|
// pos_control(blimp.pos_control),
|
|
inertial_nav(blimp.inertial_nav),
|
|
ahrs(blimp.ahrs),
|
|
// attitude_control(blimp.attitude_control),
|
|
motors(blimp.motors),
|
|
channel_right(blimp.channel_right),
|
|
channel_front(blimp.channel_front),
|
|
channel_down(blimp.channel_down),
|
|
channel_yaw(blimp.channel_yaw),
|
|
G_Dt(blimp.G_Dt)
|
|
{ };
|
|
|
|
// return the static controller object corresponding to supplied mode
|
|
Mode *Blimp::mode_from_mode_num(const Mode::Number mode)
|
|
{
|
|
Mode *ret = nullptr;
|
|
|
|
switch (mode) {
|
|
case Mode::Number::MANUAL:
|
|
ret = &mode_manual;
|
|
break;
|
|
case Mode::Number::LAND:
|
|
ret = &mode_land;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
// set_mode - change flight mode and perform any necessary initialisation
|
|
// optional force parameter used to force the flight mode change (used only first time mode is set)
|
|
// returns true if mode was successfully set
|
|
// ACRO, STABILIZE, ALTHOLD, LAND, DRIFT and SPORT can always be set successfully but the return state of other flight modes should be checked and the caller should deal with failures appropriately
|
|
bool Blimp::set_mode(Mode::Number mode, ModeReason reason)
|
|
{
|
|
|
|
// return immediately if we are already in the desired mode
|
|
if (mode == control_mode) {
|
|
control_mode_reason = reason;
|
|
return true;
|
|
}
|
|
|
|
Mode *new_flightmode = mode_from_mode_num((Mode::Number)mode);
|
|
if (new_flightmode == nullptr) {
|
|
gcs().send_text(MAV_SEVERITY_WARNING,"No such mode");
|
|
AP::logger().Write_Error(LogErrorSubsystem::FLIGHT_MODE, LogErrorCode(mode));
|
|
return false;
|
|
}
|
|
|
|
bool ignore_checks = !motors->armed(); // allow switching to any mode if disarmed. We rely on the arming check to perform
|
|
|
|
// ensure vehicle doesn't leap off the ground if a user switches
|
|
// into a manual throttle mode from a non-manual-throttle mode
|
|
// (e.g. user arms in guided, raises throttle to 1300 (not enough to
|
|
// trigger auto takeoff), then switches into manual):
|
|
bool user_throttle = new_flightmode->has_manual_throttle();
|
|
if (!ignore_checks &&
|
|
ap.land_complete &&
|
|
user_throttle &&
|
|
!blimp.flightmode->has_manual_throttle() &&
|
|
new_flightmode->get_pilot_desired_throttle() > blimp.get_non_takeoff_throttle()) {
|
|
gcs().send_text(MAV_SEVERITY_WARNING, "Mode change failed: throttle too high");
|
|
AP::logger().Write_Error(LogErrorSubsystem::FLIGHT_MODE, LogErrorCode(mode));
|
|
return false;
|
|
}
|
|
|
|
if (!ignore_checks &&
|
|
new_flightmode->requires_GPS() &&
|
|
!blimp.position_ok()) {
|
|
gcs().send_text(MAV_SEVERITY_WARNING, "Mode change failed: %s requires position", new_flightmode->name());
|
|
AP::logger().Write_Error(LogErrorSubsystem::FLIGHT_MODE, LogErrorCode(mode));
|
|
return false;
|
|
}
|
|
|
|
// check for valid altitude if old mode did not require it but new one does
|
|
// we only want to stop changing modes if it could make things worse
|
|
if (!ignore_checks &&
|
|
!blimp.ekf_alt_ok() &&
|
|
flightmode->has_manual_throttle() &&
|
|
!new_flightmode->has_manual_throttle()) {
|
|
gcs().send_text(MAV_SEVERITY_WARNING, "Mode change failed: %s need alt estimate", new_flightmode->name());
|
|
AP::logger().Write_Error(LogErrorSubsystem::FLIGHT_MODE, LogErrorCode(mode));
|
|
return false;
|
|
}
|
|
|
|
if (!new_flightmode->init(ignore_checks)) {
|
|
gcs().send_text(MAV_SEVERITY_WARNING,"Flight mode change failed %s", new_flightmode->name());
|
|
AP::logger().Write_Error(LogErrorSubsystem::FLIGHT_MODE, LogErrorCode(mode));
|
|
return false;
|
|
}
|
|
|
|
// perform any cleanup required by previous flight mode
|
|
exit_mode(flightmode, new_flightmode);
|
|
|
|
// store previous flight mode (only used by tradeheli's autorotation)
|
|
prev_control_mode = control_mode;
|
|
|
|
// update flight mode
|
|
flightmode = new_flightmode;
|
|
control_mode = mode;
|
|
control_mode_reason = reason;
|
|
logger.Write_Mode((uint8_t)control_mode, reason);
|
|
gcs().send_message(MSG_HEARTBEAT);
|
|
|
|
// update notify object
|
|
notify_flight_mode();
|
|
|
|
// return success
|
|
return true;
|
|
}
|
|
|
|
bool Blimp::set_mode(const uint8_t new_mode, const ModeReason reason)
|
|
{
|
|
static_assert(sizeof(Mode::Number) == sizeof(new_mode), "The new mode can't be mapped to the vehicles mode number");
|
|
#ifdef DISALLOW_GCS_MODE_CHANGE_DURING_RC_FAILSAFE
|
|
if (reason == ModeReason::GCS_COMMAND && blimp.failsafe.radio) {
|
|
// don't allow mode changes while in radio failsafe
|
|
return false;
|
|
}
|
|
#endif
|
|
return blimp.set_mode(static_cast<Mode::Number>(new_mode), reason);
|
|
}
|
|
|
|
// update_flight_mode - calls the appropriate attitude controllers based on flight mode
|
|
// called at 100hz or more
|
|
void Blimp::update_flight_mode()
|
|
{
|
|
// surface_tracking.invalidate_for_logging(); // invalidate surface tracking alt, flight mode will set to true if used
|
|
|
|
flightmode->run();
|
|
}
|
|
|
|
// exit_mode - high level call to organise cleanup as a flight mode is exited
|
|
void Blimp::exit_mode(Mode *&old_flightmode,
|
|
Mode *&new_flightmode)
|
|
{
|
|
|
|
// smooth throttle transition when switching from manual to automatic flight modes
|
|
if (old_flightmode->has_manual_throttle() && !new_flightmode->has_manual_throttle() && motors->armed() && !ap.land_complete) {
|
|
// this assumes all manual flight modes use get_pilot_desired_throttle to translate pilot input to output throttle
|
|
// set_accel_throttle_I_from_pilot_throttle();
|
|
}
|
|
|
|
// cancel any takeoffs in progress
|
|
// old_flightmode->takeoff_stop();
|
|
}
|
|
|
|
// notify_flight_mode - sets notify object based on current flight mode. Only used for OreoLED notify device
|
|
void Blimp::notify_flight_mode()
|
|
{
|
|
AP_Notify::flags.autopilot_mode = flightmode->is_autopilot();
|
|
AP_Notify::flags.flight_mode = (uint8_t)control_mode;
|
|
notify.set_flight_mode_str(flightmode->name4());
|
|
}
|
|
|
|
void Mode::update_navigation()
|
|
{
|
|
// run autopilot to make high level decisions about control modes
|
|
run_autopilot();
|
|
}
|
|
|
|
// returns desired angle in centi-degrees
|
|
void Mode::get_pilot_desired_accelerations(float &right_out, float &front_out) const
|
|
{
|
|
// throttle failsafe check
|
|
if (blimp.failsafe.radio || !blimp.ap.rc_receiver_present) {
|
|
right_out = 0;
|
|
front_out = 0;
|
|
return;
|
|
}
|
|
// fetch roll and pitch inputs
|
|
right_out = channel_right->get_control_in();
|
|
front_out = channel_front->get_control_in();
|
|
|
|
|
|
// // do circular limit
|
|
// float total_in = norm(pitch_out, roll_out);
|
|
// if (total_in > angle_limit) {
|
|
// float ratio = angle_limit / total_in;
|
|
// roll_out *= ratio;
|
|
// pitch_out *= ratio;
|
|
// }
|
|
|
|
// do lateral tilt to euler roll conversion
|
|
// roll_out = (18000/M_PI) * atanf(cosf(pitch_out*(M_PI/18000))*tanf(roll_out*(M_PI/18000)));
|
|
|
|
// roll_out and pitch_out are returned
|
|
}
|
|
|
|
// bool Mode::_TakeOff::triggered(const float target_climb_rate) const
|
|
// {
|
|
// if (!blimp.ap.land_complete) {
|
|
// // can't take off if we're already flying
|
|
// return false;
|
|
// }
|
|
// if (target_climb_rate <= 0.0f) {
|
|
// // can't takeoff unless we want to go up...
|
|
// return false;
|
|
// }
|
|
|
|
// if (blimp.motors->get_spool_state() != Fins::SpoolState::THROTTLE_UNLIMITED) {
|
|
// // hold aircraft on the ground until rotor speed runup has finished
|
|
// return false;
|
|
// }
|
|
|
|
// return true;
|
|
// }
|
|
|
|
bool Mode::is_disarmed_or_landed() const
|
|
{
|
|
if (!motors->armed() || !blimp.ap.auto_armed || blimp.ap.land_complete) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Mode::zero_throttle_and_relax_ac(bool spool_up)
|
|
{
|
|
if (spool_up) {
|
|
motors->set_desired_spool_state(Fins::DesiredSpoolState::THROTTLE_UNLIMITED);
|
|
} else {
|
|
motors->set_desired_spool_state(Fins::DesiredSpoolState::SHUT_DOWN);
|
|
}
|
|
}
|
|
|
|
// void Mode::zero_throttle_and_hold_attitude()
|
|
// {
|
|
// // run attitude controller
|
|
// attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, 0.0f);
|
|
// attitude_control->set_throttle_out(0.0f, false, blimp.g.throttle_filt);
|
|
// }
|
|
|
|
// void Mode::make_safe_spool_down()
|
|
// {
|
|
// // command aircraft to initiate the shutdown process
|
|
// motors->set_desired_spool_state(Fins::DesiredSpoolState::GROUND_IDLE);
|
|
// switch (motors->get_spool_state()) {
|
|
|
|
// case Fins::SpoolState::SHUT_DOWN:
|
|
// case Fins::SpoolState::GROUND_IDLE:
|
|
// // relax controllers during idle states
|
|
// // attitude_control->reset_rate_controller_I_terms_smoothly();
|
|
// // attitude_control->set_yaw_target_to_current_heading();
|
|
// break;
|
|
|
|
// case Fins::SpoolState::SPOOLING_UP:
|
|
// case Fins::SpoolState::THROTTLE_UNLIMITED:
|
|
// case Fins::SpoolState::SPOOLING_DOWN:
|
|
// // while transitioning though active states continue to operate normally
|
|
// break;
|
|
// }
|
|
|
|
// // pos_control->relax_alt_hold_controllers(0.0f); // forces throttle output to go to zero
|
|
// // pos_control->update_z_controller();
|
|
// // we may need to move this out
|
|
// // attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0.0f, 0.0f, 0.0f);
|
|
// }
|
|
|
|
/*
|
|
get a height above ground estimate for landing
|
|
*/
|
|
int32_t Mode::get_alt_above_ground_cm(void)
|
|
{
|
|
int32_t alt_above_ground_cm;
|
|
// if (blimp.get_rangefinder_height_interpolated_cm(alt_above_ground_cm)) {
|
|
// return alt_above_ground_cm;
|
|
// }
|
|
// if (!pos_control->is_active_xy()) {
|
|
// return blimp.current_loc.alt;
|
|
// }
|
|
if (blimp.current_loc.get_alt_cm(Location::AltFrame::ABOVE_TERRAIN, alt_above_ground_cm)) {
|
|
return alt_above_ground_cm;
|
|
}
|
|
|
|
// Assume the Earth is flat:
|
|
return blimp.current_loc.alt;
|
|
}
|
|
|
|
// void Mode::land_run_vertical_control(bool pause_descent)
|
|
// {
|
|
// float cmb_rate = 0;
|
|
// if (!pause_descent) {
|
|
// float max_land_descent_velocity;
|
|
// if (g.land_speed_high > 0) {
|
|
// max_land_descent_velocity = -g.land_speed_high;
|
|
// } else {
|
|
// max_land_descent_velocity = pos_control->get_max_speed_down();
|
|
// }
|
|
|
|
// // Don't speed up for landing.
|
|
// max_land_descent_velocity = MIN(max_land_descent_velocity, -abs(g.land_speed));
|
|
|
|
// // Compute a vertical velocity demand such that the vehicle approaches g2.land_alt_low. Without the below constraint, this would cause the vehicle to hover at g2.land_alt_low.
|
|
// // cmb_rate = AC_AttitudeControl::sqrt_controller(MAX(g2.land_alt_low,100)-get_alt_above_ground_cm(), pos_control->get_pos_z_p().kP(), pos_control->get_max_accel_z(), G_Dt);
|
|
|
|
// // Constrain the demanded vertical velocity so that it is between the configured maximum descent speed and the configured minimum descent speed.
|
|
// // cmb_rate = constrain_float(cmb_rate, max_land_descent_velocity, -abs(g.land_speed));
|
|
// }
|
|
|
|
// // update altitude target and call position controller
|
|
// pos_control->set_alt_target_from_climb_rate_ff(cmb_rate, G_Dt, true);
|
|
// pos_control->update_z_controller();
|
|
// }
|
|
|
|
// void Mode::land_run_horizontal_control()
|
|
// {
|
|
// float target_roll = 0.0f;
|
|
// float target_pitch = 0.0f;
|
|
// float target_yaw_rate = 0;
|
|
|
|
// // relax loiter target if we might be landed
|
|
// if (blimp.ap.land_complete_maybe) {
|
|
// loiter_nav->soften_for_landing();
|
|
// }
|
|
|
|
// // process pilot inputs
|
|
// if (!blimp.failsafe.radio) {
|
|
// if ((g.throttle_behavior & THR_BEHAVE_HIGH_THROTTLE_CANCELS_LAND) != 0 && blimp.rc_throttle_control_in_filter.get() > LAND_CANCEL_TRIGGER_THR){
|
|
// AP::logger().Write_Event(LogEvent::LAND_CANCELLED_BY_PILOT);
|
|
// // exit land if throttle is high
|
|
// if (!set_mode(Mode::Number::LOITER, ModeReason::THROTTLE_LAND_ESCAPE)) {
|
|
// set_mode(Mode::Number::ALT_HOLD, ModeReason::THROTTLE_LAND_ESCAPE);
|
|
// }
|
|
// }
|
|
|
|
// if (g.land_repositioning) {
|
|
|
|
// // convert pilot input to lean angles
|
|
// get_pilot_desired_lean_angles(target_roll, target_pitch, loiter_nav->get_angle_max_cd(), attitude_control->get_althold_lean_angle_max());
|
|
|
|
// // record if pilot has overridden roll or pitch
|
|
// if (!is_zero(target_roll) || !is_zero(target_pitch)) {
|
|
// if (!blimp.ap.land_repo_active) {
|
|
// AP::logger().Write_Event(LogEvent::LAND_REPO_ACTIVE);
|
|
// }
|
|
// blimp.ap.land_repo_active = true;
|
|
// }
|
|
// }
|
|
|
|
// // get pilot's desired yaw rate
|
|
// target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
|
|
// if (!is_zero(target_yaw_rate)) {
|
|
// auto_yaw.set_mode(AUTO_YAW_HOLD);
|
|
// }
|
|
// }
|
|
|
|
// // process roll, pitch inputs
|
|
// loiter_nav->set_pilot_desired_acceleration(target_roll, target_pitch, G_Dt);
|
|
|
|
// // run loiter controller
|
|
// loiter_nav->update();
|
|
|
|
// float nav_roll = loiter_nav->get_roll();
|
|
// float nav_pitch = loiter_nav->get_pitch();
|
|
|
|
// if (g2.wp_navalt_min > 0) {
|
|
// // user has requested an altitude below which navigation
|
|
// // attitude is limited. This is used to prevent commanded roll
|
|
// // over on landing, which particularly affects heliblimps if
|
|
// // there is any position estimate drift after touchdown. We
|
|
// // limit attitude to 7 degrees below this limit and linearly
|
|
// // interpolate for 1m above that
|
|
// float attitude_limit_cd = linear_interpolate(700, blimp.aparm.angle_max, get_alt_above_ground_cm(),
|
|
// g2.wp_navalt_min*100U, (g2.wp_navalt_min+1)*100U);
|
|
// float total_angle_cd = norm(nav_roll, nav_pitch);
|
|
// if (total_angle_cd > attitude_limit_cd) {
|
|
// float ratio = attitude_limit_cd / total_angle_cd;
|
|
// nav_roll *= ratio;
|
|
// nav_pitch *= ratio;
|
|
|
|
// // tell position controller we are applying an external limit
|
|
// pos_control->set_limit_accel_xy();
|
|
// }
|
|
// }
|
|
|
|
// // call attitude controller
|
|
// if (auto_yaw.mode() == AUTO_YAW_HOLD) {
|
|
// // roll & pitch from waypoint controller, yaw rate from pilot
|
|
// attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(nav_roll, nav_pitch, target_yaw_rate);
|
|
// } else {
|
|
// // roll, pitch from waypoint controller, yaw heading from auto_heading()
|
|
// attitude_control->input_euler_angle_roll_pitch_yaw(nav_roll, nav_pitch, auto_yaw.yaw(), true);
|
|
// }
|
|
// }
|
|
|
|
float Mode::throttle_hover() const
|
|
{
|
|
return motors->get_throttle_hover();
|
|
}
|
|
|
|
// transform pilot's manual throttle input to make hover throttle mid stick
|
|
// used only for manual throttle modes
|
|
// thr_mid should be in the range 0 to 1
|
|
// returns throttle output 0 to 1
|
|
float Mode::get_pilot_desired_throttle() const
|
|
{
|
|
const float thr_mid = throttle_hover();
|
|
int16_t throttle_control = channel_down->get_control_in();
|
|
|
|
int16_t mid_stick = blimp.get_throttle_mid();
|
|
// protect against unlikely divide by zero
|
|
if (mid_stick <= 0) {
|
|
mid_stick = 500;
|
|
}
|
|
|
|
// ensure reasonable throttle values
|
|
throttle_control = constrain_int16(throttle_control,0,1000);
|
|
|
|
// calculate normalised throttle input
|
|
float throttle_in;
|
|
if (throttle_control < mid_stick) {
|
|
throttle_in = ((float)throttle_control)*0.5f/(float)mid_stick;
|
|
} else {
|
|
throttle_in = 0.5f + ((float)(throttle_control-mid_stick)) * 0.5f / (float)(1000-mid_stick);
|
|
}
|
|
|
|
const float expo = constrain_float(-(thr_mid-0.5f)/0.375f, -0.5f, 1.0f);
|
|
// calculate the output throttle using the given expo function
|
|
float throttle_out = throttle_in*(1.0f-expo) + expo*throttle_in*throttle_in*throttle_in;
|
|
return throttle_out;
|
|
}
|
|
|
|
// Mode::AltHoldModeState Mode::get_alt_hold_state(float target_climb_rate_cms)
|
|
// {
|
|
// // Alt Hold State Machine Determination
|
|
// if (!motors->armed()) {
|
|
// // the aircraft should moved to a shut down state
|
|
// motors->set_desired_spool_state(Fins::DesiredSpoolState::SHUT_DOWN);
|
|
|
|
// // transition through states as aircraft spools down
|
|
// switch (motors->get_spool_state()) {
|
|
|
|
// case Fins::SpoolState::SHUT_DOWN:
|
|
// return AltHold_MotorStopped;
|
|
|
|
// case Fins::SpoolState::GROUND_IDLE:
|
|
// return AltHold_Landed_Ground_Idle;
|
|
|
|
// default:
|
|
// return AltHold_Landed_Pre_Takeoff;
|
|
// }
|
|
|
|
// } else if (takeoff.running() || takeoff.triggered(target_climb_rate_cms)) {
|
|
// // the aircraft is currently landed or taking off, asking for a positive climb rate and in THROTTLE_UNLIMITED
|
|
// // the aircraft should progress through the take off procedure
|
|
// return AltHold_Takeoff;
|
|
|
|
// } else if (!blimp.ap.auto_armed || blimp.ap.land_complete) {
|
|
// // the aircraft is armed and landed
|
|
// if (target_climb_rate_cms < 0.0f && !blimp.ap.using_interlock) {
|
|
// // the aircraft should move to a ground idle state
|
|
// motors->set_desired_spool_state(Fins::DesiredSpoolState::GROUND_IDLE);
|
|
|
|
// } else {
|
|
// // the aircraft should prepare for imminent take off
|
|
// motors->set_desired_spool_state(Fins::DesiredSpoolState::THROTTLE_UNLIMITED);
|
|
// }
|
|
|
|
// if (motors->get_spool_state() == Fins::SpoolState::GROUND_IDLE) {
|
|
// // the aircraft is waiting in ground idle
|
|
// return AltHold_Landed_Ground_Idle;
|
|
|
|
// } else {
|
|
// // the aircraft can leave the ground at any time
|
|
// return AltHold_Landed_Pre_Takeoff;
|
|
// }
|
|
|
|
// } else {
|
|
// // the aircraft is in a flying state
|
|
// motors->set_desired_spool_state(Fins::DesiredSpoolState::THROTTLE_UNLIMITED);
|
|
// return AltHold_Flying;
|
|
// }
|
|
// }
|
|
|
|
// pass-through functions to reduce code churn on conversion;
|
|
// these are candidates for moving into the Mode base
|
|
// class.
|
|
float Mode::get_pilot_desired_yaw_rate(int16_t stick_angle)
|
|
{
|
|
return blimp.get_pilot_desired_yaw_rate(stick_angle);
|
|
}
|
|
|
|
float Mode::get_pilot_desired_climb_rate(float throttle_control)
|
|
{
|
|
return blimp.get_pilot_desired_climb_rate(throttle_control);
|
|
}
|
|
|
|
float Mode::get_non_takeoff_throttle()
|
|
{
|
|
return blimp.get_non_takeoff_throttle();
|
|
}
|
|
|
|
bool Mode::set_mode(Mode::Number mode, ModeReason reason)
|
|
{
|
|
return blimp.set_mode(mode, reason);
|
|
}
|
|
|
|
void Mode::set_land_complete(bool b)
|
|
{
|
|
return blimp.set_land_complete(b);
|
|
}
|
|
|
|
GCS_Blimp &Mode::gcs()
|
|
{
|
|
return blimp.gcs();
|
|
}
|
|
|
|
// set_throttle_takeoff - allows modes to tell throttle controller we
|
|
// are taking off so I terms can be cleared
|
|
// void Mode::set_throttle_takeoff()
|
|
// {
|
|
// // tell position controller to reset alt target and reset I terms
|
|
// pos_control->init_takeoff();
|
|
// }
|
|
|
|
uint16_t Mode::get_pilot_speed_dn()
|
|
{
|
|
return blimp.get_pilot_speed_dn();
|
|
}
|