ardupilot/Tools/AP_Bootloader/support.cpp
Andrew Tridgell ef4fce80fb AP_Bootloader: support CAN multicast server
allows for fw update of network peripheral devices
2024-09-17 10:02:29 +10:00

596 lines
14 KiB
C++

/*
bootloader support functions
*/
#include <AP_HAL/AP_HAL.h>
#include "ch.h"
#include "hal.h"
#include "hwdef.h"
#include <AP_HAL_ChibiOS/hwdef/common/usbcfg.h>
#include <AP_HAL_ChibiOS/hwdef/common/flash.h>
#include <AP_HAL_ChibiOS/hwdef/common/stm32_util.h>
#include <AP_Math/AP_Math.h>
#include "support.h"
#include "mcu_f1.h"
#include "mcu_f3.h"
#include "mcu_f4.h"
#include "mcu_f7.h"
#include "mcu_h7.h"
#include "mcu_g4.h"
#include "mcu_l4.h"
// optional uprintf() code for debug
// #define BOOTLOADER_DEBUG SD1
#ifndef AP_BOOTLOADER_ALWAYS_ERASE
#define AP_BOOTLOADER_ALWAYS_ERASE 0
#endif
#if defined(BOOTLOADER_DEV_LIST)
static BaseChannel *uarts[] = { BOOTLOADER_DEV_LIST };
#if HAL_USE_SERIAL == TRUE
static SerialConfig sercfg;
#endif
static int8_t locked_uart = -1;
static uint8_t last_uart;
#ifndef BOOTLOADER_BAUDRATE
#define BOOTLOADER_BAUDRATE 115200
#endif
// #pragma GCC optimize("O0")
static bool cin_data(uint8_t *data, uint8_t len, unsigned timeout_ms)
{
for (uint8_t i=0; i<ARRAY_SIZE(uarts); i++) {
if (locked_uart == -1 || locked_uart == i) {
if (chnReadTimeout(uarts[i], data, len, chTimeMS2I(timeout_ms)) == len) {
last_uart = i;
return true;
}
}
}
chThdSleepMicroseconds(500);
return false;
}
int16_t cin(unsigned timeout_ms)
{
uint8_t b = 0;
if (cin_data(&b, 1, timeout_ms)) {
return b;
}
return -1;
}
int cin_word(uint32_t *wp, unsigned timeout_ms)
{
if (cin_data((uint8_t *)wp, 4, timeout_ms)) {
return 0;
}
return -1;
}
void cout(uint8_t *data, uint32_t len)
{
chnWriteTimeout(uarts[last_uart], data, len, chTimeMS2I(100));
}
#endif // BOOTLOADER_DEV_LIST
static uint32_t flash_base_page;
static uint16_t num_pages;
static const uint8_t *flash_base = (const uint8_t *)(0x08000000 + (FLASH_BOOTLOADER_LOAD_KB + APP_START_OFFSET_KB)*1024U);
/*
initialise flash_base_page and num_pages
*/
void flash_init(void)
{
uint32_t reserved = 0;
num_pages = stm32_flash_getnumpages();
/*
advance flash_base_page to account for (FLASH_BOOTLOADER_LOAD_KB + APP_START_OFFSET_KB)
*/
while (reserved < (FLASH_BOOTLOADER_LOAD_KB + APP_START_OFFSET_KB) * 1024U &&
flash_base_page < num_pages) {
reserved += stm32_flash_getpagesize(flash_base_page);
flash_base_page++;
}
/*
reduce num_pages to account for FLASH_RESERVE_END_KB
*/
reserved = 0;
while (reserved < FLASH_RESERVE_END_KB * 1024U) {
reserved += stm32_flash_getpagesize(num_pages-1);
num_pages--;
}
}
void flash_set_keep_unlocked(bool set)
{
stm32_flash_keep_unlocked(set);
}
/*
read a word at offset relative to flash base
*/
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wcast-align"
uint32_t flash_func_read_word(uint32_t offset)
{
return *(const uint32_t *)(flash_base + offset);
}
#pragma GCC diagnostic pop
bool flash_func_write_word(uint32_t offset, uint32_t v)
{
return stm32_flash_write(uint32_t(flash_base+offset), &v, sizeof(v));
}
bool flash_func_write_words(uint32_t offset, uint32_t *v, uint8_t n)
{
return stm32_flash_write(uint32_t(flash_base+offset), v, n*sizeof(*v));
}
uint32_t flash_func_sector_size(uint32_t sector)
{
if (sector >= num_pages-flash_base_page) {
return 0;
}
return stm32_flash_getpagesize(flash_base_page+sector);
}
bool flash_func_is_erased(uint32_t sector)
{
return stm32_flash_ispageerased(flash_base_page+sector);
}
bool flash_func_erase_sector(uint32_t sector, bool force_erase)
{
#if AP_BOOTLOADER_ALWAYS_ERASE
return stm32_flash_erasepage(flash_base_page+sector);
#else
if (force_erase || !stm32_flash_ispageerased(flash_base_page+sector)) {
return stm32_flash_erasepage(flash_base_page+sector);
}
return true;
#endif
}
// read one-time programmable memory
uint32_t flash_func_read_otp(uint32_t idx)
{
#ifndef OTP_SIZE
return 0;
#else
if (idx & 3) {
return 0;
}
if (idx > OTP_SIZE) {
return 0;
}
return *(uint32_t *)(idx + OTP_BASE);
#endif
}
// read chip serial number
uint32_t flash_func_read_sn(uint32_t idx)
{
return *(uint32_t *)(UDID_START + idx);
}
/*
we use a write buffer for flashing, both for efficiency and to
ensure that we only ever do 32 byte aligned writes on STM32H7. If
you attempt to do writes on a H7 of less than 32 bytes or not
aligned then the flash can end up in a CRC error state, which can
generate a hardware fault (a double ECC error) on flash read, even
after a power cycle
*/
static struct {
uint32_t buffer[8];
uint32_t address;
uint8_t n;
} fbuf;
/*
flush the write buffer
*/
bool flash_write_flush(void)
{
if (fbuf.n == 0) {
return true;
}
fbuf.n = 0;
return flash_func_write_words(fbuf.address, fbuf.buffer, ARRAY_SIZE(fbuf.buffer));
}
/*
write to flash with buffering to 32 bytes alignment
*/
bool flash_write_buffer(uint32_t address, const uint32_t *v, uint8_t nwords)
{
if (fbuf.n > 0 && address != fbuf.address + fbuf.n*4) {
if (!flash_write_flush()) {
return false;
}
}
while (nwords > 0) {
if (fbuf.n == 0) {
fbuf.address = address;
memset(fbuf.buffer, 0xff, sizeof(fbuf.buffer));
}
uint8_t n = MIN(ARRAY_SIZE(fbuf.buffer)-fbuf.n, nwords);
memcpy(&fbuf.buffer[fbuf.n], v, n*4);
address += n*4;
v += n;
nwords -= n;
fbuf.n += n;
if (fbuf.n == ARRAY_SIZE(fbuf.buffer)) {
if (!flash_write_flush()) {
return false;
}
}
}
return true;
}
uint32_t get_mcu_id(void)
{
return *(uint32_t *)DBGMCU_BASE;
}
#define REVID_MASK 0xFFFF0000
#define DEVID_MASK 0xFFF
uint32_t get_mcu_desc(uint32_t max, uint8_t *revstr)
{
uint32_t idcode = (*(uint32_t *)DBGMCU_BASE);
int32_t mcuid = idcode & DEVID_MASK;
uint16_t revid = ((idcode & REVID_MASK) >> 16);
uint8_t *endp = &revstr[max - 1];
uint8_t *strp = revstr;
for (const auto &desc : mcu_descriptions) {
if (mcuid == desc.mcuid) {
// copy the string in:
const char *tmp = desc.desc;
while (strp < endp && *tmp) {
*strp++ = *tmp++;
}
break;
}
}
// comma-separated:
if (strp < endp) {
*strp++ = ',';
}
for (const auto &rev : silicon_revs) {
if (rev.revid == revid) {
if (strp < endp) {
*strp++ = rev.rev;
}
}
}
return strp - revstr;
}
void led_on(unsigned led)
{
#ifdef HAL_GPIO_PIN_LED_BOOTLOADER
if (led == LED_BOOTLOADER) {
palWriteLine(HAL_GPIO_PIN_LED_BOOTLOADER, HAL_LED_ON);
}
#endif
#ifdef HAL_GPIO_PIN_LED_ACTIVITY
if (led == LED_ACTIVITY) {
palWriteLine(HAL_GPIO_PIN_LED_ACTIVITY, HAL_LED_ON);
}
#endif
}
void led_off(unsigned led)
{
#ifdef HAL_GPIO_PIN_LED_BOOTLOADER
if (led == LED_BOOTLOADER) {
palWriteLine(HAL_GPIO_PIN_LED_BOOTLOADER, !HAL_LED_ON);
}
#endif
#ifdef HAL_GPIO_PIN_LED_ACTIVITY
if (led == LED_ACTIVITY) {
palWriteLine(HAL_GPIO_PIN_LED_ACTIVITY, !HAL_LED_ON);
}
#endif
}
void led_toggle(unsigned led)
{
#ifdef HAL_GPIO_PIN_LED_BOOTLOADER
if (led == LED_BOOTLOADER) {
palToggleLine(HAL_GPIO_PIN_LED_BOOTLOADER);
}
#endif
#ifdef HAL_GPIO_PIN_LED_ACTIVITY
if (led == LED_ACTIVITY) {
palToggleLine(HAL_GPIO_PIN_LED_ACTIVITY);
}
#endif
}
extern "C" {
int vsnprintf(char *str, size_t size, const char *fmt, va_list ap);
}
// printf to USB for debugging
void uprintf(const char *fmt, ...)
{
#ifdef BOOTLOADER_DEBUG
va_list ap;
static bool initialised;
static SerialConfig debug_sercfg;
char umsg[200];
if (!initialised) {
initialised = true;
debug_sercfg.speed = 57600;
sdStart(&BOOTLOADER_DEBUG, &debug_sercfg);
}
va_start(ap, fmt);
uint32_t n = vsnprintf(umsg, sizeof(umsg), fmt, ap);
va_end(ap);
if (n > sizeof(umsg)) {
n = sizeof(umsg);
}
chnWriteTimeout(&BOOTLOADER_DEBUG, (const uint8_t *)umsg, n, chTimeMS2I(100));
#endif
}
void thread_sleep_ms(uint32_t ms)
{
while (ms > 0) {
// don't sleep more than 65 at a time, to cope with 16 bit
// timer
const uint32_t dt = ms > 65? 65: ms;
chThdSleepMilliseconds(dt);
ms -= dt;
}
}
void thread_sleep_us(uint32_t us)
{
while (us > 0) {
// don't sleep more than 65 at a time, to cope with 16 bit
// timer
const uint32_t dt = us > 6500? 6500: us;
chThdSleepMicroseconds(dt);
us -= dt;
}
}
// generate a pulse sequence forever, for debugging
void led_pulses(uint8_t npulses)
{
led_off(LED_BOOTLOADER);
while (true) {
for (uint8_t i=0; i<npulses; i++) {
led_on(LED_BOOTLOADER);
thread_sleep_ms(200);
led_off(LED_BOOTLOADER);
thread_sleep_ms(200);
}
thread_sleep_ms(2000);
}
}
//simple variant of std c function to reduce used flash space
void *memcpy(void *dest, const void *src, size_t n)
{
uint8_t *tdest = (uint8_t *)dest;
uint8_t *tsrc = (uint8_t *)src;
for (int i=0; i<n; i++) {
tdest[i] = tsrc[i];
}
return dest;
}
//simple variant of std c function to reduce used flash space
int strncmp(const char *s1, const char *s2, size_t n)
{
while ((*s1 != 0) && (*s1 == *s2) && n--) {
s1++;
s2++;
}
if (n == 0) {
return 0;
}
return (*s1 - *s2);
}
//simple variant of std c function to reduce used flash space
int strcmp(const char *s1, const char *s2)
{
while ((*s1 != 0) && (*s1 == *s2)) {
s1++;
s2++;
}
return (*s1 - *s2);
}
//simple variant of std c function to reduce used flash space
size_t strlen(const char *s1)
{
size_t ret = 0;
while (*s1++) ret++;
return ret;
}
//simple variant of std c function to reduce used flash space
void *memset(void *s, int c, size_t n)
{
uint8_t *b = (uint8_t *)s;
while (n--) {
*b++ = c;
}
return s;
}
#if defined(BOOTLOADER_DEV_LIST)
void lock_bl_port(void)
{
locked_uart = last_uart;
}
/*
initialise serial ports
*/
void init_uarts(void)
{
#if HAL_USE_SERIAL_USB == TRUE
sduObjectInit(&SDU1);
sduStart(&SDU1, &serusbcfg1);
#if HAL_HAVE_DUAL_USB_CDC
sduObjectInit(&SDU2);
sduStart(&SDU2, &serusbcfg2);
#endif
usbDisconnectBus(serusbcfg1.usbp);
thread_sleep_ms(1000);
usbStart(serusbcfg1.usbp, &usbcfg);
usbConnectBus(serusbcfg1.usbp);
#endif
#if HAL_USE_SERIAL == TRUE
sercfg.speed = BOOTLOADER_BAUDRATE;
for (const auto &uart : uarts) {
#if HAL_USE_SERIAL_USB == TRUE
if (uart == (BaseChannel *)&SDU1
#if HAL_HAVE_DUAL_USB_CDC
|| uart == (BaseChannel *)&SDU2
#endif
) {
continue;
}
#endif
sdStart((SerialDriver *)uart, &sercfg);
}
#endif
}
#if defined(BOOTLOADER_FORWARD_OTG2_SERIAL)
/* forward serial to OTG2
Used for devices containing multiple devices in one
*/
static SerialConfig forward_sercfg;
static uint32_t otg2_serial_deadline_ms;
bool update_otg2_serial_forward()
{
// get baudrate set on SDU2 and set it on HAL_FORWARD_OTG2_SERIAL if changed
if (forward_sercfg.speed != BOOTLOADER_FORWARD_OTG2_SERIAL_BAUDRATE) {
forward_sercfg.speed = BOOTLOADER_FORWARD_OTG2_SERIAL_BAUDRATE;
#if defined(BOOTLOADER_FORWARD_OTG2_SERIAL_SWAP) && BOOTLOADER_FORWARD_OTG2_SERIAL_SWAP
forward_sercfg.cr2 = USART_CR2_SWAP;
#endif
sdStart(&BOOTLOADER_FORWARD_OTG2_SERIAL, &forward_sercfg);
}
// check how many bytes are available to read from HAL_FORWARD_OTG2_SERIAL
uint8_t data[SERIAL_BUFFERS_SIZE]; // read upto SERIAL_BUFFERS_SIZE at a time
int n = chnReadTimeout(&SDU2, data, SERIAL_BUFFERS_SIZE, TIME_IMMEDIATE);
if (n > 0) {
// do a blocking write to HAL_FORWARD_OTG2_SERIAL
chnWriteTimeout(&BOOTLOADER_FORWARD_OTG2_SERIAL, data, n, TIME_IMMEDIATE);
otg2_serial_deadline_ms = AP_HAL::millis() + 1000;
}
n = chnReadTimeout(&BOOTLOADER_FORWARD_OTG2_SERIAL, data, SERIAL_BUFFERS_SIZE, TIME_IMMEDIATE);
if (n > 0) {
// do a blocking write to SDU2
chnWriteTimeout(&SDU2, data, n, TIME_IMMEDIATE);
}
return (AP_HAL::millis() < otg2_serial_deadline_ms);
}
#endif
/*
set baudrate on the current port
*/
void port_setbaud(uint32_t baudrate)
{
#if HAL_USE_SERIAL_USB == TRUE
if (uarts[last_uart] == (BaseChannel *)&SDU1
#if HAL_HAVE_DUAL_USB_CDC
|| uarts[last_uart] == (BaseChannel *)&SDU2
#endif
) {
// can't set baudrate on USB
return;
}
#endif
#if HAL_USE_SERIAL == TRUE
memset(&sercfg, 0, sizeof(sercfg));
sercfg.speed = baudrate;
sdStart((SerialDriver *)uarts[last_uart], &sercfg);
#endif
}
#endif // BOOTLOADER_DEV_LIST
#if defined(STM32H7) && CH_CFG_USE_HEAP
/*
check if flash has any ECC errors and if it does then erase all of
flash
*/
#define ECC_CHECK_CHUNK_SIZE (32*sizeof(uint32_t))
void check_ecc_errors(void)
{
__disable_fault_irq();
// stm32_flash_corrupt(0x8043200);
auto *dma = dmaStreamAlloc(STM32_DMA_STREAM_ID(1, 1), 0, nullptr, nullptr);
uint32_t *buf = (uint32_t*)malloc_dma(ECC_CHECK_CHUNK_SIZE);
if (buf == nullptr) {
// DMA'ble memory not available
return;
}
uint32_t ofs = 0;
while (ofs < BOARD_FLASH_SIZE*1024) {
if (FLASH->SR1 & (FLASH_SR_SNECCERR | FLASH_SR_DBECCERR)) {
break;
}
#if BOARD_FLASH_SIZE > 1024
if (FLASH->SR2 & (FLASH_SR_SNECCERR | FLASH_SR_DBECCERR)) {
break;
}
#endif
dmaStartMemCopy(dma,
STM32_DMA_CR_PL(0) | STM32_DMA_CR_PSIZE_BYTE |
STM32_DMA_CR_MSIZE_BYTE,
ofs+(uint8_t*)FLASH_BASE, buf, ECC_CHECK_CHUNK_SIZE);
dmaWaitCompletion(dma);
ofs += ECC_CHECK_CHUNK_SIZE;
}
dmaStreamFree(dma);
if (ofs < BOARD_FLASH_SIZE*1024) {
// we must have ECC errors in flash
flash_set_keep_unlocked(true);
for (uint32_t i=0; i<num_pages; i++) {
stm32_flash_erasepage(flash_base_page+i);
}
flash_set_keep_unlocked(false);
}
__enable_fault_irq();
}
#endif // defined(STM32H7) && CH_CFG_USE_HEAP