mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-09 17:38:32 -04:00
159 lines
5.3 KiB
C++
159 lines
5.3 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#include "Plane.h"
|
|
|
|
void Plane::read_control_switch()
|
|
{
|
|
static bool switch_debouncer;
|
|
uint8_t switchPosition = readSwitch();
|
|
|
|
// If switchPosition = 255 this indicates that the mode control channel input was out of range
|
|
// If we get this value we do not want to change modes.
|
|
if(switchPosition == 255) return;
|
|
|
|
if (failsafe.ch3_failsafe || failsafe.ch3_counter > 0) {
|
|
// when we are in ch3_failsafe mode then RC input is not
|
|
// working, and we need to ignore the mode switch channel
|
|
return;
|
|
}
|
|
|
|
if (millis() - failsafe.last_valid_rc_ms > 100) {
|
|
// only use signals that are less than 0.1s old.
|
|
return;
|
|
}
|
|
|
|
// we look for changes in the switch position. If the
|
|
// RST_SWITCH_CH parameter is set, then it is a switch that can be
|
|
// used to force re-reading of the control switch. This is useful
|
|
// when returning to the previous mode after a failsafe or fence
|
|
// breach. This channel is best used on a momentary switch (such
|
|
// as a spring loaded trainer switch).
|
|
if (oldSwitchPosition != switchPosition ||
|
|
(g.reset_switch_chan != 0 &&
|
|
hal.rcin->read(g.reset_switch_chan-1) > RESET_SWITCH_CHAN_PWM)) {
|
|
|
|
if (switch_debouncer == false) {
|
|
// this ensures that mode switches only happen if the
|
|
// switch changes for 2 reads. This prevents momentary
|
|
// spikes in the mode control channel from causing a mode
|
|
// switch
|
|
switch_debouncer = true;
|
|
return;
|
|
}
|
|
|
|
set_mode((enum FlightMode)(flight_modes[switchPosition].get()));
|
|
|
|
oldSwitchPosition = switchPosition;
|
|
}
|
|
|
|
if (g.reset_mission_chan != 0 &&
|
|
hal.rcin->read(g.reset_mission_chan-1) > RESET_SWITCH_CHAN_PWM) {
|
|
mission.start();
|
|
prev_WP_loc = current_loc;
|
|
}
|
|
|
|
switch_debouncer = false;
|
|
|
|
if (g.inverted_flight_ch != 0) {
|
|
// if the user has configured an inverted flight channel, then
|
|
// fly upside down when that channel goes above INVERTED_FLIGHT_PWM
|
|
inverted_flight = (control_mode != MANUAL && hal.rcin->read(g.inverted_flight_ch-1) > INVERTED_FLIGHT_PWM);
|
|
}
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
|
|
if (g.override_channel > 0) {
|
|
// if the user has configured an override channel then check it
|
|
bool override = (hal.rcin->read(g.override_channel-1) >= PX4IO_OVERRIDE_PWM);
|
|
if (override && !px4io_override_enabled) {
|
|
// we only update the mixer if we are not armed. This is
|
|
// important as otherwise we will need to temporarily
|
|
// disarm to change the mixer
|
|
if (hal.util->get_soft_armed() || setup_failsafe_mixing()) {
|
|
px4io_override_enabled = true;
|
|
// disable output channels to force PX4IO override
|
|
gcs_send_text_P(MAV_SEVERITY_WARNING, PSTR("PX4IO Override enabled"));
|
|
} else {
|
|
// we'll try again next loop. The PX4IO code sometimes
|
|
// rejects a mixer, probably due to it being busy in
|
|
// some way?
|
|
gcs_send_text_P(MAV_SEVERITY_WARNING, PSTR("PX4IO Override enable failed"));
|
|
}
|
|
} else if (!override && px4io_override_enabled) {
|
|
px4io_override_enabled = false;
|
|
RC_Channel_aux::enable_aux_servos();
|
|
gcs_send_text_P(MAV_SEVERITY_WARNING, PSTR("PX4IO Override disabled"));
|
|
}
|
|
if (px4io_override_enabled &&
|
|
hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_ARMED) {
|
|
// we force safety off, so that if this override is used
|
|
// with a in-flight reboot it gives a way for the pilot to
|
|
// re-arm and take manual control
|
|
hal.rcout->force_safety_off();
|
|
}
|
|
}
|
|
#endif // CONFIG_HAL_BOARD
|
|
}
|
|
|
|
uint8_t Plane::readSwitch(void)
|
|
{
|
|
uint16_t pulsewidth = hal.rcin->read(g.flight_mode_channel - 1);
|
|
if (pulsewidth <= 900 || pulsewidth >= 2200) return 255; // This is an error condition
|
|
if (pulsewidth > 1230 && pulsewidth <= 1360) return 1;
|
|
if (pulsewidth > 1360 && pulsewidth <= 1490) return 2;
|
|
if (pulsewidth > 1490 && pulsewidth <= 1620) return 3;
|
|
if (pulsewidth > 1620 && pulsewidth <= 1749) return 4; // Software Manual
|
|
if (pulsewidth >= 1750) return 5; // Hardware Manual
|
|
return 0;
|
|
}
|
|
|
|
void Plane::reset_control_switch()
|
|
{
|
|
oldSwitchPosition = 254;
|
|
read_control_switch();
|
|
}
|
|
|
|
/*
|
|
called when entering autotune
|
|
*/
|
|
void Plane::autotune_start(void)
|
|
{
|
|
rollController.autotune_start();
|
|
pitchController.autotune_start();
|
|
}
|
|
|
|
/*
|
|
called when exiting autotune
|
|
*/
|
|
void Plane::autotune_restore(void)
|
|
{
|
|
rollController.autotune_restore();
|
|
pitchController.autotune_restore();
|
|
}
|
|
|
|
/*
|
|
enable/disable autotune for AUTO modes
|
|
*/
|
|
void Plane::autotune_enable(bool enable)
|
|
{
|
|
if (enable) {
|
|
autotune_start();
|
|
} else {
|
|
autotune_restore();
|
|
}
|
|
}
|
|
|
|
/*
|
|
are we flying inverted?
|
|
*/
|
|
bool Plane::fly_inverted(void)
|
|
{
|
|
if (g.inverted_flight_ch != 0 && inverted_flight) {
|
|
// controlled with INVERTED_FLIGHT_CH
|
|
return true;
|
|
}
|
|
if (control_mode == AUTO && auto_state.inverted_flight) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|