mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-22 00:28:30 -04:00
1709 lines
55 KiB
C++
1709 lines
55 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include "DataFlash.h"
|
|
#include <stdlib.h>
|
|
#include <AP_Param/AP_Param.h>
|
|
#include <AP_Math/AP_Math.h>
|
|
#include <AP_Baro/AP_Baro.h>
|
|
#include <AP_AHRS/AP_AHRS.h>
|
|
#include <AP_BattMonitor/AP_BattMonitor.h>
|
|
#include <AP_Compass/AP_Compass.h>
|
|
|
|
#include "DataFlash_SITL.h"
|
|
#include "DataFlash_File.h"
|
|
#include "DataFlash_Empty.h"
|
|
#include "DataFlash_APM1.h"
|
|
#include "DataFlash_APM2.h"
|
|
|
|
#include "DFMessageWriter.h"
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
void DataFlash_Class::Init(const struct LogStructure *structure, uint8_t num_types)
|
|
{
|
|
_num_types = num_types;
|
|
_structures = structure;
|
|
|
|
// DataFlash
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_APM1
|
|
backend = new DataFlash_APM1(*this);
|
|
#elif CONFIG_HAL_BOARD == HAL_BOARD_APM2
|
|
backend = new DataFlash_APM2(*this);
|
|
#elif defined(HAL_BOARD_LOG_DIRECTORY)
|
|
backend = new DataFlash_File(*this, HAL_BOARD_LOG_DIRECTORY);
|
|
#else
|
|
// no dataflash driver
|
|
backend = new DataFlash_Empty(*this);
|
|
#endif
|
|
if (backend == NULL) {
|
|
hal.scheduler->panic(PSTR("Unable to open dataflash"));
|
|
}
|
|
backend->Init(structure, num_types);
|
|
}
|
|
|
|
// This function determines the number of whole or partial log files in the DataFlash
|
|
// Wholly overwritten files are (of course) lost.
|
|
uint16_t DataFlash_Block::get_num_logs(void)
|
|
{
|
|
uint16_t lastpage;
|
|
uint16_t last;
|
|
uint16_t first;
|
|
|
|
if (find_last_page() == 1) {
|
|
return 0;
|
|
}
|
|
|
|
StartRead(1);
|
|
|
|
if (GetFileNumber() == 0xFFFF) {
|
|
return 0;
|
|
}
|
|
|
|
lastpage = find_last_page();
|
|
StartRead(lastpage);
|
|
last = GetFileNumber();
|
|
StartRead(lastpage + 2);
|
|
first = GetFileNumber();
|
|
if(first > last) {
|
|
StartRead(1);
|
|
first = GetFileNumber();
|
|
}
|
|
|
|
if (last == first) {
|
|
return 1;
|
|
}
|
|
|
|
return (last - first + 1);
|
|
}
|
|
|
|
// This function starts a new log file in the DataFlash
|
|
uint16_t DataFlash_Block::start_new_log(void)
|
|
{
|
|
uint16_t last_page = find_last_page();
|
|
|
|
StartRead(last_page);
|
|
//Serial.print("last page: "); Serial.println(last_page);
|
|
//Serial.print("file #: "); Serial.println(GetFileNumber());
|
|
//Serial.print("file page: "); Serial.println(GetFilePage());
|
|
|
|
if(find_last_log() == 0 || GetFileNumber() == 0xFFFF) {
|
|
SetFileNumber(1);
|
|
StartWrite(1);
|
|
//Serial.println("start log from 0");
|
|
log_write_started = true;
|
|
return 1;
|
|
}
|
|
|
|
uint16_t new_log_num;
|
|
|
|
// Check for log of length 1 page and suppress
|
|
if(GetFilePage() <= 1) {
|
|
new_log_num = GetFileNumber();
|
|
// Last log too short, reuse its number
|
|
// and overwrite it
|
|
SetFileNumber(new_log_num);
|
|
StartWrite(last_page);
|
|
} else {
|
|
new_log_num = GetFileNumber()+1;
|
|
if (last_page == 0xFFFF) {
|
|
last_page=0;
|
|
}
|
|
SetFileNumber(new_log_num);
|
|
StartWrite(last_page + 1);
|
|
}
|
|
log_write_started = true;
|
|
return new_log_num;
|
|
}
|
|
|
|
// This function finds the first and last pages of a log file
|
|
// The first page may be greater than the last page if the DataFlash has been filled and partially overwritten.
|
|
void DataFlash_Block::get_log_boundaries(uint16_t log_num, uint16_t & start_page, uint16_t & end_page)
|
|
{
|
|
uint16_t num = get_num_logs();
|
|
uint16_t look;
|
|
|
|
if (df_BufferIdx != 0) {
|
|
FinishWrite();
|
|
hal.scheduler->delay(100);
|
|
}
|
|
|
|
if(num == 1)
|
|
{
|
|
StartRead(df_NumPages);
|
|
if (GetFileNumber() == 0xFFFF)
|
|
{
|
|
start_page = 1;
|
|
end_page = find_last_page_of_log((uint16_t)log_num);
|
|
} else {
|
|
end_page = find_last_page_of_log((uint16_t)log_num);
|
|
start_page = end_page + 1;
|
|
}
|
|
|
|
} else {
|
|
if(log_num==1) {
|
|
StartRead(df_NumPages);
|
|
if(GetFileNumber() == 0xFFFF) {
|
|
start_page = 1;
|
|
} else {
|
|
start_page = find_last_page() + 1;
|
|
}
|
|
} else {
|
|
if(log_num == find_last_log() - num + 1) {
|
|
start_page = find_last_page() + 1;
|
|
} else {
|
|
look = log_num-1;
|
|
do {
|
|
start_page = find_last_page_of_log(look) + 1;
|
|
look--;
|
|
} while (start_page <= 0 && look >=1);
|
|
}
|
|
}
|
|
}
|
|
if (start_page == df_NumPages+1 || start_page == 0) {
|
|
start_page = 1;
|
|
}
|
|
end_page = find_last_page_of_log(log_num);
|
|
if (end_page == 0) {
|
|
end_page = start_page;
|
|
}
|
|
}
|
|
|
|
// find log size and time
|
|
void DataFlash_Block::get_log_info(uint16_t log_num, uint32_t &size, uint32_t &time_utc)
|
|
{
|
|
uint16_t start, end;
|
|
get_log_boundaries(log_num, start, end);
|
|
if (end >= start) {
|
|
size = (end + 1 - start) * (uint32_t)df_PageSize;
|
|
} else {
|
|
size = (df_NumPages + end - start) * (uint32_t)df_PageSize;
|
|
}
|
|
time_utc = 0;
|
|
}
|
|
|
|
bool DataFlash_Block::check_wrapped(void)
|
|
{
|
|
StartRead(df_NumPages);
|
|
if(GetFileNumber() == 0xFFFF)
|
|
return 0;
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
// This funciton finds the last log number
|
|
uint16_t DataFlash_Block::find_last_log(void)
|
|
{
|
|
uint16_t last_page = find_last_page();
|
|
StartRead(last_page);
|
|
return GetFileNumber();
|
|
}
|
|
|
|
// This function finds the last page of the last file
|
|
uint16_t DataFlash_Block::find_last_page(void)
|
|
{
|
|
uint16_t look;
|
|
uint16_t bottom = 1;
|
|
uint16_t top = df_NumPages;
|
|
uint32_t look_hash;
|
|
uint32_t bottom_hash;
|
|
uint32_t top_hash;
|
|
|
|
StartRead(bottom);
|
|
bottom_hash = ((int32_t)GetFileNumber()<<16) | GetFilePage();
|
|
|
|
while(top-bottom > 1) {
|
|
look = (top+bottom)/2;
|
|
StartRead(look);
|
|
look_hash = (int32_t)GetFileNumber()<<16 | GetFilePage();
|
|
if (look_hash >= 0xFFFF0000) look_hash = 0;
|
|
|
|
if(look_hash < bottom_hash) {
|
|
// move down
|
|
top = look;
|
|
} else {
|
|
// move up
|
|
bottom = look;
|
|
bottom_hash = look_hash;
|
|
}
|
|
}
|
|
|
|
StartRead(top);
|
|
top_hash = ((int32_t)GetFileNumber()<<16) | GetFilePage();
|
|
if (top_hash >= 0xFFFF0000) {
|
|
top_hash = 0;
|
|
}
|
|
if (top_hash > bottom_hash) {
|
|
return top;
|
|
}
|
|
|
|
return bottom;
|
|
}
|
|
|
|
// This function finds the last page of a particular log file
|
|
uint16_t DataFlash_Block::find_last_page_of_log(uint16_t log_number)
|
|
{
|
|
uint16_t look;
|
|
uint16_t bottom;
|
|
uint16_t top;
|
|
uint32_t look_hash;
|
|
uint32_t check_hash;
|
|
|
|
if(check_wrapped())
|
|
{
|
|
StartRead(1);
|
|
bottom = GetFileNumber();
|
|
if (bottom > log_number)
|
|
{
|
|
bottom = find_last_page();
|
|
top = df_NumPages;
|
|
} else {
|
|
bottom = 1;
|
|
top = find_last_page();
|
|
}
|
|
} else {
|
|
bottom = 1;
|
|
top = find_last_page();
|
|
}
|
|
|
|
check_hash = (int32_t)log_number<<16 | 0xFFFF;
|
|
|
|
while(top-bottom > 1)
|
|
{
|
|
look = (top+bottom)/2;
|
|
StartRead(look);
|
|
look_hash = (int32_t)GetFileNumber()<<16 | GetFilePage();
|
|
if (look_hash >= 0xFFFF0000) look_hash = 0;
|
|
|
|
if(look_hash > check_hash) {
|
|
// move down
|
|
top = look;
|
|
} else {
|
|
// move up
|
|
bottom = look;
|
|
}
|
|
}
|
|
|
|
StartRead(top);
|
|
if (GetFileNumber() == log_number) return top;
|
|
|
|
StartRead(bottom);
|
|
if (GetFileNumber() == log_number) return bottom;
|
|
|
|
return -1;
|
|
}
|
|
|
|
#define PGM_UINT8(addr) pgm_read_byte((const prog_char *)addr)
|
|
|
|
#ifndef DATAFLASH_NO_CLI
|
|
/*
|
|
read and print a log entry using the format strings from the given structure
|
|
- this really should in in the frontend, not the backend
|
|
*/
|
|
void DataFlash_Backend::_print_log_entry(uint8_t msg_type,
|
|
print_mode_fn print_mode,
|
|
AP_HAL::BetterStream *port)
|
|
{
|
|
uint8_t i;
|
|
for (i=0; i<_num_types; i++) {
|
|
if (msg_type == PGM_UINT8(&_structures[i].msg_type)) {
|
|
break;
|
|
}
|
|
}
|
|
if (i == _num_types) {
|
|
port->printf_P(PSTR("UNKN, %u\n"), (unsigned)msg_type);
|
|
return;
|
|
}
|
|
uint8_t msg_len = PGM_UINT8(&_structures[i].msg_len) - 3;
|
|
uint8_t pkt[msg_len];
|
|
if (!ReadBlock(pkt, msg_len)) {
|
|
return;
|
|
}
|
|
port->printf_P(PSTR("%S, "), _structures[i].name);
|
|
for (uint8_t ofs=0, fmt_ofs=0; ofs<msg_len; fmt_ofs++) {
|
|
char fmt = PGM_UINT8(&_structures[i].format[fmt_ofs]);
|
|
switch (fmt) {
|
|
case 'b': {
|
|
port->printf_P(PSTR("%d"), (int)pkt[ofs]);
|
|
ofs += 1;
|
|
break;
|
|
}
|
|
case 'B': {
|
|
port->printf_P(PSTR("%u"), (unsigned)pkt[ofs]);
|
|
ofs += 1;
|
|
break;
|
|
}
|
|
case 'h': {
|
|
int16_t v;
|
|
memcpy(&v, &pkt[ofs], sizeof(v));
|
|
port->printf_P(PSTR("%d"), (int)v);
|
|
ofs += sizeof(v);
|
|
break;
|
|
}
|
|
case 'H': {
|
|
uint16_t v;
|
|
memcpy(&v, &pkt[ofs], sizeof(v));
|
|
port->printf_P(PSTR("%u"), (unsigned)v);
|
|
ofs += sizeof(v);
|
|
break;
|
|
}
|
|
case 'i': {
|
|
int32_t v;
|
|
memcpy(&v, &pkt[ofs], sizeof(v));
|
|
port->printf_P(PSTR("%ld"), (long)v);
|
|
ofs += sizeof(v);
|
|
break;
|
|
}
|
|
case 'I': {
|
|
uint32_t v;
|
|
memcpy(&v, &pkt[ofs], sizeof(v));
|
|
port->printf_P(PSTR("%lu"), (unsigned long)v);
|
|
ofs += sizeof(v);
|
|
break;
|
|
}
|
|
case 'q': {
|
|
int64_t v;
|
|
memcpy(&v, &pkt[ofs], sizeof(v));
|
|
port->printf_P(PSTR("%lld"), (long long)v);
|
|
ofs += sizeof(v);
|
|
break;
|
|
}
|
|
case 'Q': {
|
|
uint64_t v;
|
|
memcpy(&v, &pkt[ofs], sizeof(v));
|
|
port->printf_P(PSTR("%llu"), (unsigned long long)v);
|
|
ofs += sizeof(v);
|
|
break;
|
|
}
|
|
case 'f': {
|
|
float v;
|
|
memcpy(&v, &pkt[ofs], sizeof(v));
|
|
port->printf_P(PSTR("%f"), (double)v);
|
|
ofs += sizeof(v);
|
|
break;
|
|
}
|
|
case 'd': {
|
|
double v;
|
|
memcpy(&v, &pkt[ofs], sizeof(v));
|
|
// note that %f here *really* means a single-precision
|
|
// float, so we lose precision printing this double out
|
|
// dtoa_engine needed....
|
|
port->printf_P(PSTR("%f"), (double)v);
|
|
ofs += sizeof(v);
|
|
break;
|
|
}
|
|
case 'c': {
|
|
int16_t v;
|
|
memcpy(&v, &pkt[ofs], sizeof(v));
|
|
port->printf_P(PSTR("%.2f"), (double)(0.01f*v));
|
|
ofs += sizeof(v);
|
|
break;
|
|
}
|
|
case 'C': {
|
|
uint16_t v;
|
|
memcpy(&v, &pkt[ofs], sizeof(v));
|
|
port->printf_P(PSTR("%.2f"), (double)(0.01f*v));
|
|
ofs += sizeof(v);
|
|
break;
|
|
}
|
|
case 'e': {
|
|
int32_t v;
|
|
memcpy(&v, &pkt[ofs], sizeof(v));
|
|
port->printf_P(PSTR("%.2f"), (double)(0.01f*v));
|
|
ofs += sizeof(v);
|
|
break;
|
|
}
|
|
case 'E': {
|
|
uint32_t v;
|
|
memcpy(&v, &pkt[ofs], sizeof(v));
|
|
port->printf_P(PSTR("%.2f"), (double)(0.01f*v));
|
|
ofs += sizeof(v);
|
|
break;
|
|
}
|
|
case 'L': {
|
|
int32_t v;
|
|
memcpy(&v, &pkt[ofs], sizeof(v));
|
|
print_latlon(port, v);
|
|
ofs += sizeof(v);
|
|
break;
|
|
}
|
|
case 'n': {
|
|
char v[5];
|
|
memcpy(&v, &pkt[ofs], sizeof(v));
|
|
v[sizeof(v)-1] = 0;
|
|
port->printf_P(PSTR("%s"), v);
|
|
ofs += sizeof(v)-1;
|
|
break;
|
|
}
|
|
case 'N': {
|
|
char v[17];
|
|
memcpy(&v, &pkt[ofs], sizeof(v));
|
|
v[sizeof(v)-1] = 0;
|
|
port->printf_P(PSTR("%s"), v);
|
|
ofs += sizeof(v)-1;
|
|
break;
|
|
}
|
|
case 'Z': {
|
|
char v[65];
|
|
memcpy(&v, &pkt[ofs], sizeof(v));
|
|
v[sizeof(v)-1] = 0;
|
|
port->printf_P(PSTR("%s"), v);
|
|
ofs += sizeof(v)-1;
|
|
break;
|
|
}
|
|
case 'M': {
|
|
print_mode(port, pkt[ofs]);
|
|
ofs += 1;
|
|
break;
|
|
}
|
|
default:
|
|
ofs = msg_len;
|
|
break;
|
|
}
|
|
if (ofs < msg_len) {
|
|
port->printf_P(PSTR(", "));
|
|
}
|
|
}
|
|
port->println();
|
|
}
|
|
|
|
/*
|
|
print FMT specifiers for log dumps where we have wrapped in the
|
|
dataflash and so have no formats. This assumes the log being dumped
|
|
using the same log formats as the current formats, but it is better
|
|
than falling back to old defaults in the GCS
|
|
*/
|
|
void DataFlash_Block::_print_log_formats(AP_HAL::BetterStream *port)
|
|
{
|
|
for (uint8_t i=0; i<_num_types; i++) {
|
|
const struct LogStructure *s = &_structures[i];
|
|
port->printf_P(PSTR("FMT, %u, %u, %S, %S, %S\n"),
|
|
(unsigned)PGM_UINT8(&s->msg_type),
|
|
(unsigned)PGM_UINT8(&s->msg_len),
|
|
s->name, s->format, s->labels);
|
|
}
|
|
}
|
|
|
|
/*
|
|
Read the log and print it on port
|
|
*/
|
|
void DataFlash_Block::LogReadProcess(uint16_t log_num,
|
|
uint16_t start_page, uint16_t end_page,
|
|
print_mode_fn print_mode,
|
|
AP_HAL::BetterStream *port)
|
|
{
|
|
uint8_t log_step = 0;
|
|
uint16_t page = start_page;
|
|
bool first_entry = true;
|
|
|
|
if (df_BufferIdx != 0) {
|
|
FinishWrite();
|
|
hal.scheduler->delay(100);
|
|
}
|
|
|
|
StartRead(start_page);
|
|
|
|
while (true) {
|
|
uint8_t data;
|
|
if (!ReadBlock(&data, 1)) {
|
|
break;
|
|
}
|
|
|
|
// This is a state machine to read the packets
|
|
switch(log_step) {
|
|
case 0:
|
|
if (data == HEAD_BYTE1) {
|
|
log_step++;
|
|
}
|
|
break;
|
|
|
|
case 1:
|
|
if (data == HEAD_BYTE2) {
|
|
log_step++;
|
|
} else {
|
|
log_step = 0;
|
|
}
|
|
break;
|
|
|
|
case 2:
|
|
log_step = 0;
|
|
if (first_entry && data != LOG_FORMAT_MSG) {
|
|
_print_log_formats(port);
|
|
}
|
|
first_entry = false;
|
|
_print_log_entry(data, print_mode, port);
|
|
break;
|
|
}
|
|
uint16_t new_page = GetPage();
|
|
if (new_page != page) {
|
|
if (new_page == end_page+1 || new_page == start_page) {
|
|
return;
|
|
}
|
|
page = new_page;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
dump header information from all log pages
|
|
*/
|
|
void DataFlash_Block::DumpPageInfo(AP_HAL::BetterStream *port)
|
|
{
|
|
for (uint16_t count=1; count<=df_NumPages; count++) {
|
|
StartRead(count);
|
|
port->printf_P(PSTR("DF page, log file #, log page: %u,\t"), (unsigned)count);
|
|
port->printf_P(PSTR("%u,\t"), (unsigned)GetFileNumber());
|
|
port->printf_P(PSTR("%u\n"), (unsigned)GetFilePage());
|
|
}
|
|
}
|
|
|
|
/*
|
|
show information about the device
|
|
*/
|
|
void DataFlash_Block::ShowDeviceInfo(AP_HAL::BetterStream *port)
|
|
{
|
|
if (!CardInserted()) {
|
|
port->println_P(PSTR("No dataflash inserted"));
|
|
return;
|
|
}
|
|
ReadManufacturerID();
|
|
port->printf_P(PSTR("Manufacturer: 0x%02x Device: 0x%04x\n"),
|
|
(unsigned)df_manufacturer,
|
|
(unsigned)df_device);
|
|
port->printf_P(PSTR("NumPages: %u PageSize: %u\n"),
|
|
(unsigned)df_NumPages+1,
|
|
(unsigned)df_PageSize);
|
|
}
|
|
|
|
/*
|
|
list available log numbers
|
|
*/
|
|
void DataFlash_Block::ListAvailableLogs(AP_HAL::BetterStream *port)
|
|
{
|
|
uint16_t num_logs = get_num_logs();
|
|
int16_t last_log_num = find_last_log();
|
|
uint16_t log_start = 0;
|
|
uint16_t log_end = 0;
|
|
|
|
if (num_logs == 0) {
|
|
port->printf_P(PSTR("\nNo logs\n\n"));
|
|
return;
|
|
}
|
|
port->printf_P(PSTR("\n%u logs\n"), (unsigned)num_logs);
|
|
|
|
for (uint16_t i=num_logs; i>=1; i--) {
|
|
uint16_t last_log_start = log_start, last_log_end = log_end;
|
|
uint16_t temp = last_log_num - i + 1;
|
|
get_log_boundaries(temp, log_start, log_end);
|
|
port->printf_P(PSTR("Log %u, start %u, end %u\n"),
|
|
(unsigned)temp,
|
|
(unsigned)log_start,
|
|
(unsigned)log_end);
|
|
if (last_log_start == log_start && last_log_end == log_end) {
|
|
// we are printing bogus logs
|
|
break;
|
|
}
|
|
}
|
|
port->println();
|
|
}
|
|
#endif // DATAFLASH_NO_CLI
|
|
|
|
// This function starts a new log file in the DataFlash, and writes
|
|
// the format of supported messages in the log
|
|
uint16_t DataFlash_Class::StartNewLog(void)
|
|
{
|
|
uint16_t ret;
|
|
|
|
ret = start_new_log();
|
|
if (ret == 0xFFFF) {
|
|
// don't write out formats if we fail to open the log
|
|
return ret;
|
|
}
|
|
|
|
_startup_messagewriter.reset();
|
|
|
|
return ret;
|
|
}
|
|
|
|
// add new logging formats to the log. Used by libraries that want to
|
|
// add their own log messages
|
|
void DataFlash_Class::AddLogFormats(const struct LogStructure *structures, uint8_t num_types)
|
|
{
|
|
// write new log formats
|
|
for (uint8_t i=0; i<num_types; i++) {
|
|
Log_Write_Format(&structures[i]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
write a structure format to the log - should be in frontend
|
|
*/
|
|
void DataFlash_Backend::Log_Fill_Format(const struct LogStructure *s, struct log_Format &pkt)
|
|
{
|
|
memset(&pkt, 0, sizeof(pkt));
|
|
pkt.head1 = HEAD_BYTE1;
|
|
pkt.head2 = HEAD_BYTE2;
|
|
pkt.msgid = LOG_FORMAT_MSG;
|
|
pkt.type = PGM_UINT8(&s->msg_type);
|
|
pkt.length = PGM_UINT8(&s->msg_len);
|
|
strncpy_P(pkt.name, s->name, sizeof(pkt.name));
|
|
strncpy_P(pkt.format, s->format, sizeof(pkt.format));
|
|
strncpy_P(pkt.labels, s->labels, sizeof(pkt.labels));
|
|
}
|
|
|
|
/*
|
|
write a structure format to the log
|
|
*/
|
|
bool DataFlash_Class::Log_Write_Format(const struct LogStructure *s)
|
|
{
|
|
struct log_Format pkt;
|
|
Log_Fill_Format(s, pkt);
|
|
return WriteCriticalBlock(&pkt, sizeof(pkt));
|
|
}
|
|
|
|
/*
|
|
write a parameter to the log
|
|
*/
|
|
bool DataFlash_Class::Log_Write_Parameter(const char *name, float value)
|
|
{
|
|
struct log_Parameter pkt = {
|
|
LOG_PACKET_HEADER_INIT(LOG_PARAMETER_MSG),
|
|
time_us : hal.scheduler->micros64(),
|
|
name : {},
|
|
value : value
|
|
};
|
|
strncpy(pkt.name, name, sizeof(pkt.name));
|
|
return WriteCriticalBlock(&pkt, sizeof(pkt));
|
|
}
|
|
|
|
/*
|
|
write a parameter to the log
|
|
*/
|
|
bool DataFlash_Class::Log_Write_Parameter(const AP_Param *ap,
|
|
const AP_Param::ParamToken &token,
|
|
enum ap_var_type type)
|
|
{
|
|
char name[16];
|
|
ap->copy_name_token(token, &name[0], sizeof(name), true);
|
|
return Log_Write_Parameter(name, ap->cast_to_float(type));
|
|
}
|
|
|
|
/*
|
|
write all parameters to the log - used when starting a new log so
|
|
the log file has a full record of the parameters
|
|
*/
|
|
void DataFlash_Class::Log_Write_Parameters(void)
|
|
{
|
|
AP_Param::ParamToken token;
|
|
AP_Param *ap;
|
|
enum ap_var_type type;
|
|
|
|
for (ap=AP_Param::first(&token, &type);
|
|
ap;
|
|
ap=AP_Param::next_scalar(&token, &type)) {
|
|
Log_Write_Parameter(ap, token, type);
|
|
// slow down the parameter dump to prevent saturating
|
|
// the dataflash write bandwidth
|
|
hal.scheduler->delay(1);
|
|
}
|
|
}
|
|
|
|
// Write an GPS packet
|
|
void DataFlash_Class::Log_Write_GPS(const AP_GPS &gps, uint8_t i, int32_t relative_alt)
|
|
{
|
|
const struct Location &loc = gps.location(i);
|
|
struct log_GPS pkt = {
|
|
LOG_PACKET_HEADER_INIT((uint8_t)(LOG_GPS_MSG+i)),
|
|
time_us : hal.scheduler->micros64(),
|
|
status : (uint8_t)gps.status(i),
|
|
gps_week_ms : gps.time_week_ms(i),
|
|
gps_week : gps.time_week(i),
|
|
num_sats : gps.num_sats(i),
|
|
hdop : gps.get_hdop(i),
|
|
latitude : loc.lat,
|
|
longitude : loc.lng,
|
|
rel_altitude : relative_alt,
|
|
altitude : loc.alt,
|
|
ground_speed : (uint32_t)(gps.ground_speed(i) * 100),
|
|
ground_course : gps.ground_course_cd(i),
|
|
vel_z : gps.velocity(i).z,
|
|
used : (uint8_t)(gps.primary_sensor() == i)
|
|
};
|
|
WriteBlock(&pkt, sizeof(pkt));
|
|
|
|
/* write auxillary accuracy information as well */
|
|
float hacc = 0, vacc = 0, sacc = 0;
|
|
gps.horizontal_accuracy(i, hacc);
|
|
gps.vertical_accuracy(i, vacc);
|
|
gps.speed_accuracy(i, sacc);
|
|
struct log_GPA pkt2 = {
|
|
LOG_PACKET_HEADER_INIT((uint8_t)(LOG_GPA_MSG+i)),
|
|
time_us : hal.scheduler->micros64(),
|
|
vdop : gps.get_vdop(i),
|
|
hacc : (uint16_t)(hacc*100),
|
|
vacc : (uint16_t)(vacc*100),
|
|
sacc : (uint16_t)(sacc*100)
|
|
};
|
|
WriteBlock(&pkt2, sizeof(pkt2));
|
|
}
|
|
|
|
|
|
// Write an RFND (rangefinder) packet
|
|
void DataFlash_Class::Log_Write_RFND(const RangeFinder &rangefinder)
|
|
{
|
|
struct log_RFND pkt = {
|
|
LOG_PACKET_HEADER_INIT((uint8_t)(LOG_RFND_MSG)),
|
|
time_us : hal.scheduler->micros64(),
|
|
dist1 : rangefinder.distance_cm(0),
|
|
dist2 : rangefinder.distance_cm(1)
|
|
};
|
|
WriteBlock(&pkt, sizeof(pkt));
|
|
}
|
|
|
|
// Write an RCIN packet
|
|
void DataFlash_Class::Log_Write_RCIN(void)
|
|
{
|
|
struct log_RCIN pkt = {
|
|
LOG_PACKET_HEADER_INIT(LOG_RCIN_MSG),
|
|
time_us : hal.scheduler->micros64(),
|
|
chan1 : hal.rcin->read(0),
|
|
chan2 : hal.rcin->read(1),
|
|
chan3 : hal.rcin->read(2),
|
|
chan4 : hal.rcin->read(3),
|
|
chan5 : hal.rcin->read(4),
|
|
chan6 : hal.rcin->read(5),
|
|
chan7 : hal.rcin->read(6),
|
|
chan8 : hal.rcin->read(7),
|
|
chan9 : hal.rcin->read(8),
|
|
chan10 : hal.rcin->read(9),
|
|
chan11 : hal.rcin->read(10),
|
|
chan12 : hal.rcin->read(11),
|
|
chan13 : hal.rcin->read(12),
|
|
chan14 : hal.rcin->read(13)
|
|
};
|
|
WriteBlock(&pkt, sizeof(pkt));
|
|
}
|
|
|
|
// Write an SERVO packet
|
|
void DataFlash_Class::Log_Write_RCOUT(void)
|
|
{
|
|
struct log_RCOUT pkt = {
|
|
LOG_PACKET_HEADER_INIT(LOG_RCOUT_MSG),
|
|
time_us : hal.scheduler->micros64(),
|
|
chan1 : hal.rcout->read(0),
|
|
chan2 : hal.rcout->read(1),
|
|
chan3 : hal.rcout->read(2),
|
|
chan4 : hal.rcout->read(3),
|
|
chan5 : hal.rcout->read(4),
|
|
chan6 : hal.rcout->read(5),
|
|
chan7 : hal.rcout->read(6),
|
|
chan8 : hal.rcout->read(7),
|
|
chan9 : hal.rcout->read(8),
|
|
chan10 : hal.rcout->read(9),
|
|
chan11 : hal.rcout->read(10),
|
|
chan12 : hal.rcout->read(11)
|
|
};
|
|
WriteBlock(&pkt, sizeof(pkt));
|
|
Log_Write_ESC();
|
|
}
|
|
|
|
// Write an RSSI packet
|
|
void DataFlash_Class::Log_Write_RSSI(AP_RSSI &rssi)
|
|
{
|
|
struct log_RSSI pkt = {
|
|
LOG_PACKET_HEADER_INIT(LOG_RSSI_MSG),
|
|
time_us : hal.scheduler->micros64(),
|
|
RXRSSI : rssi.read_receiver_rssi()
|
|
};
|
|
WriteBlock(&pkt, sizeof(pkt));
|
|
}
|
|
|
|
// Write a BARO packet
|
|
void DataFlash_Class::Log_Write_Baro(AP_Baro &baro)
|
|
{
|
|
uint64_t time_us = hal.scheduler->micros64();
|
|
struct log_BARO pkt = {
|
|
LOG_PACKET_HEADER_INIT(LOG_BARO_MSG),
|
|
time_us : time_us,
|
|
altitude : baro.get_altitude(0),
|
|
pressure : baro.get_pressure(0),
|
|
temperature : (int16_t)(baro.get_temperature(0) * 100),
|
|
climbrate : baro.get_climb_rate()
|
|
};
|
|
WriteBlock(&pkt, sizeof(pkt));
|
|
#if BARO_MAX_INSTANCES > 1
|
|
if (baro.num_instances() > 1 && baro.healthy(1)) {
|
|
struct log_BARO pkt2 = {
|
|
LOG_PACKET_HEADER_INIT(LOG_BAR2_MSG),
|
|
time_us : time_us,
|
|
altitude : baro.get_altitude(1),
|
|
pressure : baro.get_pressure(1),
|
|
temperature : (int16_t)(baro.get_temperature(1) * 100),
|
|
climbrate : baro.get_climb_rate()
|
|
};
|
|
WriteBlock(&pkt2, sizeof(pkt2));
|
|
}
|
|
#endif
|
|
#if BARO_MAX_INSTANCES > 2
|
|
if (baro.num_instances() > 2 && baro.healthy(2)) {
|
|
struct log_BARO pkt3 = {
|
|
LOG_PACKET_HEADER_INIT(LOG_BAR3_MSG),
|
|
time_us : time_us,
|
|
altitude : baro.get_altitude(2),
|
|
pressure : baro.get_pressure(2),
|
|
temperature : (int16_t)(baro.get_temperature(2) * 100),
|
|
climbrate : baro.get_climb_rate()
|
|
};
|
|
WriteBlock(&pkt3, sizeof(pkt3));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Write an raw accel/gyro data packet
|
|
void DataFlash_Class::Log_Write_IMU(const AP_InertialSensor &ins)
|
|
{
|
|
uint64_t time_us = hal.scheduler->micros64();
|
|
const Vector3f &gyro = ins.get_gyro(0);
|
|
const Vector3f &accel = ins.get_accel(0);
|
|
struct log_IMU pkt = {
|
|
LOG_PACKET_HEADER_INIT(LOG_IMU_MSG),
|
|
time_us : time_us,
|
|
gyro_x : gyro.x,
|
|
gyro_y : gyro.y,
|
|
gyro_z : gyro.z,
|
|
accel_x : accel.x,
|
|
accel_y : accel.y,
|
|
accel_z : accel.z,
|
|
gyro_error : ins.get_gyro_error_count(0),
|
|
accel_error : ins.get_accel_error_count(0),
|
|
temperature : ins.get_temperature(0),
|
|
gyro_health : (uint8_t)ins.get_gyro_health(0),
|
|
accel_health : (uint8_t)ins.get_accel_health(0)
|
|
};
|
|
WriteBlock(&pkt, sizeof(pkt));
|
|
if (ins.get_gyro_count() < 2 && ins.get_accel_count() < 2) {
|
|
return;
|
|
}
|
|
#if INS_MAX_INSTANCES > 1
|
|
const Vector3f &gyro2 = ins.get_gyro(1);
|
|
const Vector3f &accel2 = ins.get_accel(1);
|
|
struct log_IMU pkt2 = {
|
|
LOG_PACKET_HEADER_INIT(LOG_IMU2_MSG),
|
|
time_us : time_us,
|
|
gyro_x : gyro2.x,
|
|
gyro_y : gyro2.y,
|
|
gyro_z : gyro2.z,
|
|
accel_x : accel2.x,
|
|
accel_y : accel2.y,
|
|
accel_z : accel2.z,
|
|
gyro_error : ins.get_gyro_error_count(1),
|
|
accel_error : ins.get_accel_error_count(1),
|
|
temperature : ins.get_temperature(1),
|
|
gyro_health : (uint8_t)ins.get_gyro_health(1),
|
|
accel_health : (uint8_t)ins.get_accel_health(1)
|
|
};
|
|
WriteBlock(&pkt2, sizeof(pkt2));
|
|
if (ins.get_gyro_count() < 3 && ins.get_accel_count() < 3) {
|
|
return;
|
|
}
|
|
const Vector3f &gyro3 = ins.get_gyro(2);
|
|
const Vector3f &accel3 = ins.get_accel(2);
|
|
struct log_IMU pkt3 = {
|
|
LOG_PACKET_HEADER_INIT(LOG_IMU3_MSG),
|
|
time_us : time_us,
|
|
gyro_x : gyro3.x,
|
|
gyro_y : gyro3.y,
|
|
gyro_z : gyro3.z,
|
|
accel_x : accel3.x,
|
|
accel_y : accel3.y,
|
|
accel_z : accel3.z,
|
|
gyro_error : ins.get_gyro_error_count(2),
|
|
accel_error : ins.get_accel_error_count(2),
|
|
temperature : ins.get_temperature(2),
|
|
gyro_health : (uint8_t)ins.get_gyro_health(2),
|
|
accel_health : (uint8_t)ins.get_accel_health(2)
|
|
};
|
|
WriteBlock(&pkt3, sizeof(pkt3));
|
|
#endif
|
|
}
|
|
|
|
// Write an accel/gyro delta time data packet
|
|
void DataFlash_Class::Log_Write_IMUDT(const AP_InertialSensor &ins)
|
|
{
|
|
float delta_t = ins.get_delta_time();
|
|
float delta_vel_t = ins.get_delta_velocity_dt(0);
|
|
Vector3f delta_angle, delta_velocity;
|
|
ins.get_delta_angle(0, delta_angle);
|
|
ins.get_delta_velocity(0, delta_velocity);
|
|
|
|
uint64_t time_us = hal.scheduler->micros64();
|
|
struct log_IMUDT pkt = {
|
|
LOG_PACKET_HEADER_INIT(LOG_IMUDT_MSG),
|
|
time_us : time_us,
|
|
delta_time : delta_t,
|
|
delta_vel_dt : delta_vel_t,
|
|
delta_ang_x : delta_angle.x,
|
|
delta_ang_y : delta_angle.y,
|
|
delta_ang_z : delta_angle.z,
|
|
delta_vel_x : delta_velocity.x,
|
|
delta_vel_y : delta_velocity.y,
|
|
delta_vel_z : delta_velocity.z
|
|
};
|
|
WriteBlock(&pkt, sizeof(pkt));
|
|
if (ins.get_gyro_count() < 2 && ins.get_accel_count() < 2) {
|
|
return;
|
|
}
|
|
#if INS_MAX_INSTANCES > 1
|
|
delta_vel_t = ins.get_delta_velocity_dt(1);
|
|
if (!ins.get_delta_angle(1, delta_angle)) {
|
|
delta_angle.zero();
|
|
}
|
|
if (!ins.get_delta_velocity(1, delta_velocity)) {
|
|
delta_velocity.zero();
|
|
}
|
|
struct log_IMUDT pkt2 = {
|
|
LOG_PACKET_HEADER_INIT(LOG_IMUDT2_MSG),
|
|
time_us : time_us,
|
|
delta_time : delta_t,
|
|
delta_vel_dt : delta_vel_t,
|
|
delta_ang_x : delta_angle.x,
|
|
delta_ang_y : delta_angle.y,
|
|
delta_ang_z : delta_angle.z,
|
|
delta_vel_x : delta_velocity.x,
|
|
delta_vel_y : delta_velocity.y,
|
|
delta_vel_z : delta_velocity.z
|
|
};
|
|
WriteBlock(&pkt2, sizeof(pkt2));
|
|
|
|
if (ins.get_gyro_count() < 3 && ins.get_accel_count() < 3) {
|
|
return;
|
|
}
|
|
delta_vel_t = ins.get_delta_velocity_dt(1);
|
|
if (!ins.get_delta_angle(2, delta_angle)) {
|
|
delta_angle.zero();
|
|
}
|
|
if (!ins.get_delta_velocity(2, delta_velocity)) {
|
|
delta_velocity.zero();
|
|
}
|
|
struct log_IMUDT pkt3 = {
|
|
LOG_PACKET_HEADER_INIT(LOG_IMUDT3_MSG),
|
|
time_us : time_us,
|
|
delta_time : delta_t,
|
|
delta_vel_dt : delta_vel_t,
|
|
delta_ang_x : delta_angle.x,
|
|
delta_ang_y : delta_angle.y,
|
|
delta_ang_z : delta_angle.z,
|
|
delta_vel_x : delta_velocity.x,
|
|
delta_vel_y : delta_velocity.y,
|
|
delta_vel_z : delta_velocity.z
|
|
};
|
|
WriteBlock(&pkt3, sizeof(pkt3));
|
|
#endif
|
|
}
|
|
|
|
void DataFlash_Class::Log_Write_Vibration(const AP_InertialSensor &ins)
|
|
{
|
|
#if INS_VIBRATION_CHECK
|
|
uint64_t time_us = hal.scheduler->micros64();
|
|
Vector3f vibration = ins.get_vibration_levels();
|
|
struct log_Vibe pkt = {
|
|
LOG_PACKET_HEADER_INIT(LOG_VIBE_MSG),
|
|
time_us : time_us,
|
|
vibe_x : vibration.x,
|
|
vibe_y : vibration.y,
|
|
vibe_z : vibration.z,
|
|
clipping_0 : ins.get_accel_clip_count(0),
|
|
clipping_1 : ins.get_accel_clip_count(1),
|
|
clipping_2 : ins.get_accel_clip_count(2)
|
|
};
|
|
WriteBlock(&pkt, sizeof(pkt));
|
|
#endif
|
|
}
|
|
|
|
void DataFlash_Class::Log_Write_SysInfo(const prog_char_t *firmware_string)
|
|
{
|
|
Log_Write_Message_P(firmware_string);
|
|
|
|
#if defined(PX4_GIT_VERSION) && defined(NUTTX_GIT_VERSION)
|
|
Log_Write_Message_P(PSTR("PX4: " PX4_GIT_VERSION " NuttX: " NUTTX_GIT_VERSION));
|
|
#endif
|
|
|
|
// write system identifier as well if available
|
|
char sysid[40];
|
|
if (hal.util->get_system_id(sysid)) {
|
|
Log_Write_Message(sysid);
|
|
}
|
|
|
|
// Write all current parameters
|
|
Log_Write_Parameters();
|
|
}
|
|
|
|
// Write a mission command. Total length : 36 bytes
|
|
bool DataFlash_Class::Log_Write_Mission_Cmd(const AP_Mission &mission,
|
|
const AP_Mission::Mission_Command &cmd)
|
|
{
|
|
mavlink_mission_item_t mav_cmd = {};
|
|
AP_Mission::mission_cmd_to_mavlink(cmd,mav_cmd);
|
|
return Log_Write_MavCmd(mission.num_commands(),mav_cmd);
|
|
}
|
|
|
|
void DataFlash_Class::Log_Write_EntireMission(const AP_Mission &mission)
|
|
{
|
|
DFMessageWriter_WriteEntireMission writer(*this);
|
|
writer.set_mission(&mission);
|
|
writer.process();
|
|
}
|
|
|
|
// Write a text message to the log
|
|
bool DataFlash_Class::Log_Write_Message(const char *message)
|
|
{
|
|
struct log_Message pkt = {
|
|
LOG_PACKET_HEADER_INIT(LOG_MESSAGE_MSG),
|
|
time_us : hal.scheduler->micros64(),
|
|
msg : {}
|
|
};
|
|
strncpy(pkt.msg, message, sizeof(pkt.msg));
|
|
return WriteCriticalBlock(&pkt, sizeof(pkt));
|
|
}
|
|
|
|
// Write a text message to the log
|
|
bool DataFlash_Class::Log_Write_Message_P(const prog_char_t *message)
|
|
{
|
|
struct log_Message pkt = {
|
|
LOG_PACKET_HEADER_INIT(LOG_MESSAGE_MSG),
|
|
time_us : hal.scheduler->micros64(),
|
|
msg : {}
|
|
};
|
|
strncpy_P(pkt.msg, message, sizeof(pkt.msg));
|
|
return WriteCriticalBlock(&pkt, sizeof(pkt));
|
|
}
|
|
|
|
// Write a POWR packet
|
|
void DataFlash_Class::Log_Write_Power(void)
|
|
{
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
|
|
struct log_POWR pkt = {
|
|
LOG_PACKET_HEADER_INIT(LOG_POWR_MSG),
|
|
time_us : hal.scheduler->micros64(),
|
|
Vcc : (uint16_t)(hal.analogin->board_voltage() * 100),
|
|
Vservo : (uint16_t)(hal.analogin->servorail_voltage() * 100),
|
|
flags : hal.analogin->power_status_flags()
|
|
};
|
|
WriteBlock(&pkt, sizeof(pkt));
|
|
#endif
|
|
}
|
|
|
|
// Write an AHRS2 packet
|
|
void DataFlash_Class::Log_Write_AHRS2(AP_AHRS &ahrs)
|
|
{
|
|
Vector3f euler;
|
|
struct Location loc;
|
|
if (!ahrs.get_secondary_attitude(euler) || !ahrs.get_secondary_position(loc)) {
|
|
return;
|
|
}
|
|
struct log_AHRS pkt = {
|
|
LOG_PACKET_HEADER_INIT(LOG_AHR2_MSG),
|
|
time_us : hal.scheduler->micros64(),
|
|
roll : (int16_t)(degrees(euler.x)*100),
|
|
pitch : (int16_t)(degrees(euler.y)*100),
|
|
yaw : (uint16_t)(wrap_360_cd(degrees(euler.z)*100)),
|
|
alt : loc.alt*1.0e-2f,
|
|
lat : loc.lat,
|
|
lng : loc.lng
|
|
};
|
|
WriteBlock(&pkt, sizeof(pkt));
|
|
}
|
|
|
|
// Write a POS packet
|
|
void DataFlash_Class::Log_Write_POS(AP_AHRS &ahrs)
|
|
{
|
|
Location loc;
|
|
if (!ahrs.get_position(loc)) {
|
|
return;
|
|
}
|
|
Vector3f pos;
|
|
ahrs.get_relative_position_NED(pos);
|
|
struct log_POS pkt = {
|
|
LOG_PACKET_HEADER_INIT(LOG_POS_MSG),
|
|
time_us : hal.scheduler->micros64(),
|
|
lat : loc.lat,
|
|
lng : loc.lng,
|
|
alt : loc.alt*1.0e-2f,
|
|
rel_alt : -pos.z
|
|
};
|
|
WriteBlock(&pkt, sizeof(pkt));
|
|
}
|
|
|
|
#if AP_AHRS_NAVEKF_AVAILABLE
|
|
void DataFlash_Class::Log_Write_EKF(AP_AHRS_NavEKF &ahrs, bool optFlowEnabled)
|
|
{
|
|
// Write first EKF packet
|
|
Vector3f euler;
|
|
Vector3f posNED;
|
|
Vector3f velNED;
|
|
Vector3f dAngBias;
|
|
Vector3f dVelBias;
|
|
Vector3f gyroBias;
|
|
ahrs.get_NavEKF().getEulerAngles(euler);
|
|
ahrs.get_NavEKF().getVelNED(velNED);
|
|
ahrs.get_NavEKF().getPosNED(posNED);
|
|
ahrs.get_NavEKF().getGyroBias(gyroBias);
|
|
struct log_EKF1 pkt = {
|
|
LOG_PACKET_HEADER_INIT(LOG_EKF1_MSG),
|
|
time_us : hal.scheduler->micros64(),
|
|
roll : (int16_t)(100*degrees(euler.x)), // roll angle (centi-deg, displayed as deg due to format string)
|
|
pitch : (int16_t)(100*degrees(euler.y)), // pitch angle (centi-deg, displayed as deg due to format string)
|
|
yaw : (uint16_t)wrap_360_cd(100*degrees(euler.z)), // yaw angle (centi-deg, displayed as deg due to format string)
|
|
velN : (float)(velNED.x), // velocity North (m/s)
|
|
velE : (float)(velNED.y), // velocity East (m/s)
|
|
velD : (float)(velNED.z), // velocity Down (m/s)
|
|
posN : (float)(posNED.x), // metres North
|
|
posE : (float)(posNED.y), // metres East
|
|
posD : (float)(posNED.z), // metres Down
|
|
gyrX : (int16_t)(100*degrees(gyroBias.x)), // cd/sec, displayed as deg/sec due to format string
|
|
gyrY : (int16_t)(100*degrees(gyroBias.y)), // cd/sec, displayed as deg/sec due to format string
|
|
gyrZ : (int16_t)(100*degrees(gyroBias.z)) // cd/sec, displayed as deg/sec due to format string
|
|
};
|
|
WriteBlock(&pkt, sizeof(pkt));
|
|
|
|
// Write second EKF packet
|
|
float ratio;
|
|
float az1bias, az2bias;
|
|
Vector3f wind;
|
|
Vector3f magNED;
|
|
Vector3f magXYZ;
|
|
ahrs.get_NavEKF().getIMU1Weighting(ratio);
|
|
ahrs.get_NavEKF().getAccelZBias(az1bias, az2bias);
|
|
ahrs.get_NavEKF().getWind(wind);
|
|
ahrs.get_NavEKF().getMagNED(magNED);
|
|
ahrs.get_NavEKF().getMagXYZ(magXYZ);
|
|
struct log_EKF2 pkt2 = {
|
|
LOG_PACKET_HEADER_INIT(LOG_EKF2_MSG),
|
|
time_us : hal.scheduler->micros64(),
|
|
Ratio : (int8_t)(100*ratio),
|
|
AZ1bias : (int8_t)(100*az1bias),
|
|
AZ2bias : (int8_t)(100*az2bias),
|
|
windN : (int16_t)(100*wind.x),
|
|
windE : (int16_t)(100*wind.y),
|
|
magN : (int16_t)(magNED.x),
|
|
magE : (int16_t)(magNED.y),
|
|
magD : (int16_t)(magNED.z),
|
|
magX : (int16_t)(magXYZ.x),
|
|
magY : (int16_t)(magXYZ.y),
|
|
magZ : (int16_t)(magXYZ.z)
|
|
};
|
|
WriteBlock(&pkt2, sizeof(pkt2));
|
|
|
|
// Write third EKF packet
|
|
Vector3f velInnov;
|
|
Vector3f posInnov;
|
|
Vector3f magInnov;
|
|
float tasInnov;
|
|
ahrs.get_NavEKF().getInnovations(velInnov, posInnov, magInnov, tasInnov);
|
|
struct log_EKF3 pkt3 = {
|
|
LOG_PACKET_HEADER_INIT(LOG_EKF3_MSG),
|
|
time_us : hal.scheduler->micros64(),
|
|
innovVN : (int16_t)(100*velInnov.x),
|
|
innovVE : (int16_t)(100*velInnov.y),
|
|
innovVD : (int16_t)(100*velInnov.z),
|
|
innovPN : (int16_t)(100*posInnov.x),
|
|
innovPE : (int16_t)(100*posInnov.y),
|
|
innovPD : (int16_t)(100*posInnov.z),
|
|
innovMX : (int16_t)(magInnov.x),
|
|
innovMY : (int16_t)(magInnov.y),
|
|
innovMZ : (int16_t)(magInnov.z),
|
|
innovVT : (int16_t)(100*tasInnov)
|
|
};
|
|
WriteBlock(&pkt3, sizeof(pkt3));
|
|
|
|
// Write fourth EKF packet
|
|
float velVar;
|
|
float posVar;
|
|
float hgtVar;
|
|
Vector3f magVar;
|
|
float tasVar;
|
|
Vector2f offset;
|
|
uint8_t faultStatus, timeoutStatus;
|
|
nav_filter_status solutionStatus;
|
|
ahrs.get_NavEKF().getVariances(velVar, posVar, hgtVar, magVar, tasVar, offset);
|
|
ahrs.get_NavEKF().getFilterFaults(faultStatus);
|
|
ahrs.get_NavEKF().getFilterTimeouts(timeoutStatus);
|
|
ahrs.get_NavEKF().getFilterStatus(solutionStatus);
|
|
struct log_EKF4 pkt4 = {
|
|
LOG_PACKET_HEADER_INIT(LOG_EKF4_MSG),
|
|
time_us : hal.scheduler->micros64(),
|
|
sqrtvarV : (int16_t)(100*velVar),
|
|
sqrtvarP : (int16_t)(100*posVar),
|
|
sqrtvarH : (int16_t)(100*hgtVar),
|
|
sqrtvarMX : (int16_t)(100*magVar.x),
|
|
sqrtvarMY : (int16_t)(100*magVar.y),
|
|
sqrtvarMZ : (int16_t)(100*magVar.z),
|
|
sqrtvarVT : (int16_t)(100*tasVar),
|
|
offsetNorth : (int8_t)(offset.x),
|
|
offsetEast : (int8_t)(offset.y),
|
|
faults : (uint8_t)(faultStatus),
|
|
timeouts : (uint8_t)(timeoutStatus),
|
|
solution : (uint16_t)(solutionStatus.value)
|
|
};
|
|
WriteBlock(&pkt4, sizeof(pkt4));
|
|
|
|
|
|
// Write fifth EKF packet
|
|
if (optFlowEnabled) {
|
|
float normInnov; // normalised innovation variance ratio for optical flow observations fused by the main nav filter
|
|
float gndOffset; // estimated vertical position of the terrain relative to the nav filter zero datum
|
|
float flowInnovX, flowInnovY; // optical flow LOS rate vector innovations from the main nav filter
|
|
float auxFlowInnov; // optical flow LOS rate innovation from terrain offset estimator
|
|
float HAGL; // height above ground level
|
|
float rngInnov; // range finder innovations
|
|
float range; // measured range
|
|
float gndOffsetErr; // filter ground offset state error
|
|
ahrs.get_NavEKF().getFlowDebug(normInnov, gndOffset, flowInnovX, flowInnovY, auxFlowInnov, HAGL, rngInnov, range, gndOffsetErr);
|
|
struct log_EKF5 pkt5 = {
|
|
LOG_PACKET_HEADER_INIT(LOG_EKF5_MSG),
|
|
time_us : hal.scheduler->micros64(),
|
|
normInnov : (uint8_t)(min(100*normInnov,255)),
|
|
FIX : (int16_t)(1000*flowInnovX),
|
|
FIY : (int16_t)(1000*flowInnovY),
|
|
AFI : (int16_t)(1000*auxFlowInnov),
|
|
HAGL : (int16_t)(100*HAGL),
|
|
offset : (int16_t)(100*gndOffset),
|
|
RI : (int16_t)(100*rngInnov),
|
|
meaRng : (uint16_t)(100*range),
|
|
errHAGL : (uint16_t)(100*gndOffsetErr)
|
|
};
|
|
WriteBlock(&pkt5, sizeof(pkt5));
|
|
}
|
|
|
|
// do EKF2 as well if enabled
|
|
if (ahrs.get_NavEKF2().enabled()) {
|
|
Log_Write_EKF2(ahrs, optFlowEnabled);
|
|
}
|
|
}
|
|
|
|
|
|
void DataFlash_Class::Log_Write_EKF2(AP_AHRS_NavEKF &ahrs, bool optFlowEnabled)
|
|
{
|
|
// Write first EKF packet
|
|
Vector3f euler;
|
|
Vector3f posNED;
|
|
Vector3f velNED;
|
|
Vector3f dAngBias;
|
|
Vector3f dVelBias;
|
|
Vector3f gyroBias;
|
|
ahrs.get_NavEKF2().getEulerAngles(euler);
|
|
ahrs.get_NavEKF2().getVelNED(velNED);
|
|
ahrs.get_NavEKF2().getPosNED(posNED);
|
|
ahrs.get_NavEKF2().getGyroBias(gyroBias);
|
|
struct log_EKF1 pkt = {
|
|
LOG_PACKET_HEADER_INIT(LOG_NKF1_MSG),
|
|
time_us : hal.scheduler->micros64(),
|
|
roll : (int16_t)(100*degrees(euler.x)), // roll angle (centi-deg, displayed as deg due to format string)
|
|
pitch : (int16_t)(100*degrees(euler.y)), // pitch angle (centi-deg, displayed as deg due to format string)
|
|
yaw : (uint16_t)wrap_360_cd(100*degrees(euler.z)), // yaw angle (centi-deg, displayed as deg due to format string)
|
|
velN : (float)(velNED.x), // velocity North (m/s)
|
|
velE : (float)(velNED.y), // velocity East (m/s)
|
|
velD : (float)(velNED.z), // velocity Down (m/s)
|
|
posN : (float)(posNED.x), // metres North
|
|
posE : (float)(posNED.y), // metres East
|
|
posD : (float)(posNED.z), // metres Down
|
|
gyrX : (int16_t)(100*degrees(gyroBias.x)), // cd/sec, displayed as deg/sec due to format string
|
|
gyrY : (int16_t)(100*degrees(gyroBias.y)), // cd/sec, displayed as deg/sec due to format string
|
|
gyrZ : (int16_t)(100*degrees(gyroBias.z)) // cd/sec, displayed as deg/sec due to format string
|
|
};
|
|
WriteBlock(&pkt, sizeof(pkt));
|
|
|
|
// Write second EKF packet
|
|
float azbias = 0;
|
|
Vector3f wind;
|
|
Vector3f magNED;
|
|
Vector3f magXYZ;
|
|
Vector3f gyroScaleFactor;
|
|
ahrs.get_NavEKF2().getAccelZBias(azbias);
|
|
ahrs.get_NavEKF2().getWind(wind);
|
|
ahrs.get_NavEKF2().getMagNED(magNED);
|
|
ahrs.get_NavEKF2().getMagXYZ(magXYZ);
|
|
ahrs.get_NavEKF2().getGyroScaleErrorPercentage(gyroScaleFactor);
|
|
struct log_NKF2 pkt2 = {
|
|
LOG_PACKET_HEADER_INIT(LOG_NKF2_MSG),
|
|
time_us : hal.scheduler->micros64(),
|
|
AZbias : (int8_t)(100*azbias),
|
|
scaleX : (int16_t)(100*gyroScaleFactor.x),
|
|
scaleY : (int16_t)(100*gyroScaleFactor.y),
|
|
scaleZ : (int16_t)(100*gyroScaleFactor.z),
|
|
windN : (int16_t)(100*wind.x),
|
|
windE : (int16_t)(100*wind.y),
|
|
magN : (int16_t)(magNED.x),
|
|
magE : (int16_t)(magNED.y),
|
|
magD : (int16_t)(magNED.z),
|
|
magX : (int16_t)(magXYZ.x),
|
|
magY : (int16_t)(magXYZ.y),
|
|
magZ : (int16_t)(magXYZ.z)
|
|
};
|
|
WriteBlock(&pkt2, sizeof(pkt2));
|
|
|
|
// Write third EKF packet
|
|
Vector3f velInnov;
|
|
Vector3f posInnov;
|
|
Vector3f magInnov;
|
|
float tasInnov = 0;
|
|
float yawInnov = 0;
|
|
ahrs.get_NavEKF2().getInnovations(velInnov, posInnov, magInnov, tasInnov, yawInnov);
|
|
struct log_NKF3 pkt3 = {
|
|
LOG_PACKET_HEADER_INIT(LOG_NKF3_MSG),
|
|
time_us : hal.scheduler->micros64(),
|
|
innovVN : (int16_t)(100*velInnov.x),
|
|
innovVE : (int16_t)(100*velInnov.y),
|
|
innovVD : (int16_t)(100*velInnov.z),
|
|
innovPN : (int16_t)(100*posInnov.x),
|
|
innovPE : (int16_t)(100*posInnov.y),
|
|
innovPD : (int16_t)(100*posInnov.z),
|
|
innovMX : (int16_t)(magInnov.x),
|
|
innovMY : (int16_t)(magInnov.y),
|
|
innovMZ : (int16_t)(magInnov.z),
|
|
innovYaw : (int16_t)(100*degrees(yawInnov)),
|
|
innovVT : (int16_t)(100*tasInnov)
|
|
};
|
|
WriteBlock(&pkt3, sizeof(pkt3));
|
|
|
|
// Write fourth EKF packet
|
|
float velVar = 0;
|
|
float posVar = 0;
|
|
float hgtVar = 0;
|
|
Vector3f magVar;
|
|
float tasVar = 0;
|
|
Vector2f offset;
|
|
uint8_t faultStatus=0, timeoutStatus=0;
|
|
nav_filter_status solutionStatus {};
|
|
ahrs.get_NavEKF2().getVariances(velVar, posVar, hgtVar, magVar, tasVar, offset);
|
|
ahrs.get_NavEKF2().getFilterFaults(faultStatus);
|
|
ahrs.get_NavEKF2().getFilterTimeouts(timeoutStatus);
|
|
ahrs.get_NavEKF2().getFilterStatus(solutionStatus);
|
|
struct log_EKF4 pkt4 = {
|
|
LOG_PACKET_HEADER_INIT(LOG_NKF4_MSG),
|
|
time_us : hal.scheduler->micros64(),
|
|
sqrtvarV : (int16_t)(100*velVar),
|
|
sqrtvarP : (int16_t)(100*posVar),
|
|
sqrtvarH : (int16_t)(100*hgtVar),
|
|
sqrtvarMX : (int16_t)(100*magVar.x),
|
|
sqrtvarMY : (int16_t)(100*magVar.y),
|
|
sqrtvarMZ : (int16_t)(100*magVar.z),
|
|
sqrtvarVT : (int16_t)(100*tasVar),
|
|
offsetNorth : (int8_t)(offset.x),
|
|
offsetEast : (int8_t)(offset.y),
|
|
faults : (uint8_t)(faultStatus),
|
|
timeouts : (uint8_t)(timeoutStatus),
|
|
solution : (uint16_t)(solutionStatus.value)
|
|
};
|
|
WriteBlock(&pkt4, sizeof(pkt4));
|
|
|
|
|
|
// Write fifth EKF packet
|
|
if (optFlowEnabled) {
|
|
float normInnov=0; // normalised innovation variance ratio for optical flow observations fused by the main nav filter
|
|
float gndOffset=0; // estimated vertical position of the terrain relative to the nav filter zero datum
|
|
float flowInnovX=0, flowInnovY=0; // optical flow LOS rate vector innovations from the main nav filter
|
|
float auxFlowInnov=0; // optical flow LOS rate innovation from terrain offset estimator
|
|
float HAGL=0; // height above ground level
|
|
float rngInnov=0; // range finder innovations
|
|
float range=0; // measured range
|
|
float gndOffsetErr=0; // filter ground offset state error
|
|
ahrs.get_NavEKF2().getFlowDebug(normInnov, gndOffset, flowInnovX, flowInnovY, auxFlowInnov, HAGL, rngInnov, range, gndOffsetErr);
|
|
struct log_EKF5 pkt5 = {
|
|
LOG_PACKET_HEADER_INIT(LOG_NKF5_MSG),
|
|
time_us : hal.scheduler->micros64(),
|
|
normInnov : (uint8_t)(min(100*normInnov,255)),
|
|
FIX : (int16_t)(1000*flowInnovX),
|
|
FIY : (int16_t)(1000*flowInnovY),
|
|
AFI : (int16_t)(1000*auxFlowInnov),
|
|
HAGL : (int16_t)(100*HAGL),
|
|
offset : (int16_t)(100*gndOffset),
|
|
RI : (int16_t)(100*rngInnov),
|
|
meaRng : (uint16_t)(100*range),
|
|
errHAGL : (uint16_t)(100*gndOffsetErr)
|
|
};
|
|
WriteBlock(&pkt5, sizeof(pkt5));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Write a command processing packet
|
|
bool DataFlash_Class::Log_Write_MavCmd(uint16_t cmd_total, const mavlink_mission_item_t& mav_cmd)
|
|
{
|
|
struct log_Cmd pkt = {
|
|
LOG_PACKET_HEADER_INIT(LOG_CMD_MSG),
|
|
time_us : hal.scheduler->micros64(),
|
|
command_total : (uint16_t)cmd_total,
|
|
sequence : (uint16_t)mav_cmd.seq,
|
|
command : (uint16_t)mav_cmd.command,
|
|
param1 : (float)mav_cmd.param1,
|
|
param2 : (float)mav_cmd.param2,
|
|
param3 : (float)mav_cmd.param3,
|
|
param4 : (float)mav_cmd.param4,
|
|
latitude : (float)mav_cmd.x,
|
|
longitude : (float)mav_cmd.y,
|
|
altitude : (float)mav_cmd.z
|
|
};
|
|
return WriteBlock(&pkt, sizeof(pkt));
|
|
}
|
|
|
|
void DataFlash_Class::Log_Write_Radio(const mavlink_radio_t &packet)
|
|
{
|
|
struct log_Radio pkt = {
|
|
LOG_PACKET_HEADER_INIT(LOG_RADIO_MSG),
|
|
time_us : hal.scheduler->micros64(),
|
|
rssi : packet.rssi,
|
|
remrssi : packet.remrssi,
|
|
txbuf : packet.txbuf,
|
|
noise : packet.noise,
|
|
remnoise : packet.remnoise,
|
|
rxerrors : packet.rxerrors,
|
|
fixed : packet.fixed
|
|
};
|
|
WriteBlock(&pkt, sizeof(pkt));
|
|
}
|
|
|
|
// Write a Camera packet
|
|
void DataFlash_Class::Log_Write_Camera(const AP_AHRS &ahrs, const AP_GPS &gps, const Location ¤t_loc)
|
|
{
|
|
int32_t altitude, altitude_rel;
|
|
if (current_loc.flags.relative_alt) {
|
|
altitude = current_loc.alt+ahrs.get_home().alt;
|
|
altitude_rel = current_loc.alt;
|
|
} else {
|
|
altitude = current_loc.alt;
|
|
altitude_rel = current_loc.alt - ahrs.get_home().alt;
|
|
}
|
|
|
|
struct log_Camera pkt = {
|
|
LOG_PACKET_HEADER_INIT(LOG_CAMERA_MSG),
|
|
time_us : hal.scheduler->micros64(),
|
|
gps_time : gps.time_week_ms(),
|
|
gps_week : gps.time_week(),
|
|
latitude : current_loc.lat,
|
|
longitude : current_loc.lng,
|
|
altitude : altitude,
|
|
altitude_rel: altitude_rel,
|
|
roll : (int16_t)ahrs.roll_sensor,
|
|
pitch : (int16_t)ahrs.pitch_sensor,
|
|
yaw : (uint16_t)ahrs.yaw_sensor
|
|
};
|
|
WriteBlock(&pkt, sizeof(pkt));
|
|
}
|
|
|
|
// Write an attitude packet
|
|
void DataFlash_Class::Log_Write_Attitude(AP_AHRS &ahrs, const Vector3f &targets)
|
|
{
|
|
struct log_Attitude pkt = {
|
|
LOG_PACKET_HEADER_INIT(LOG_ATTITUDE_MSG),
|
|
time_us : hal.scheduler->micros64(),
|
|
control_roll : (int16_t)targets.x,
|
|
roll : (int16_t)ahrs.roll_sensor,
|
|
control_pitch : (int16_t)targets.y,
|
|
pitch : (int16_t)ahrs.pitch_sensor,
|
|
control_yaw : (uint16_t)targets.z,
|
|
yaw : (uint16_t)ahrs.yaw_sensor,
|
|
error_rp : (uint16_t)(ahrs.get_error_rp() * 100),
|
|
error_yaw : (uint16_t)(ahrs.get_error_yaw() * 100)
|
|
};
|
|
WriteBlock(&pkt, sizeof(pkt));
|
|
}
|
|
|
|
// Write an Current data packet
|
|
void DataFlash_Class::Log_Write_Current(const AP_BattMonitor &battery, int16_t throttle)
|
|
{
|
|
float voltage2 = battery.voltage2();
|
|
struct log_Current pkt = {
|
|
LOG_PACKET_HEADER_INIT(LOG_CURRENT_MSG),
|
|
time_us : hal.scheduler->micros64(),
|
|
throttle : throttle,
|
|
battery_voltage : (int16_t) (battery.voltage() * 100.0f),
|
|
current_amps : (int16_t) (battery.current_amps() * 100.0f),
|
|
board_voltage : (uint16_t)(hal.analogin->board_voltage()*1000),
|
|
current_total : battery.current_total_mah(),
|
|
battery2_voltage : (int16_t)(voltage2 * 100.0f)
|
|
};
|
|
WriteBlock(&pkt, sizeof(pkt));
|
|
}
|
|
|
|
// Write a Compass packet
|
|
void DataFlash_Class::Log_Write_Compass(const Compass &compass)
|
|
{
|
|
const Vector3f &mag_field = compass.get_field(0);
|
|
const Vector3f &mag_offsets = compass.get_offsets(0);
|
|
const Vector3f &mag_motor_offsets = compass.get_motor_offsets(0);
|
|
struct log_Compass pkt = {
|
|
LOG_PACKET_HEADER_INIT(LOG_COMPASS_MSG),
|
|
time_us : hal.scheduler->micros64(),
|
|
mag_x : (int16_t)mag_field.x,
|
|
mag_y : (int16_t)mag_field.y,
|
|
mag_z : (int16_t)mag_field.z,
|
|
offset_x : (int16_t)mag_offsets.x,
|
|
offset_y : (int16_t)mag_offsets.y,
|
|
offset_z : (int16_t)mag_offsets.z,
|
|
motor_offset_x : (int16_t)mag_motor_offsets.x,
|
|
motor_offset_y : (int16_t)mag_motor_offsets.y,
|
|
motor_offset_z : (int16_t)mag_motor_offsets.z,
|
|
health : (uint8_t)compass.healthy(0)
|
|
};
|
|
WriteBlock(&pkt, sizeof(pkt));
|
|
|
|
#if COMPASS_MAX_INSTANCES > 1
|
|
if (compass.get_count() > 1) {
|
|
const Vector3f &mag_field2 = compass.get_field(1);
|
|
const Vector3f &mag_offsets2 = compass.get_offsets(1);
|
|
const Vector3f &mag_motor_offsets2 = compass.get_motor_offsets(1);
|
|
struct log_Compass pkt2 = {
|
|
LOG_PACKET_HEADER_INIT(LOG_COMPASS2_MSG),
|
|
time_us : hal.scheduler->micros64(),
|
|
mag_x : (int16_t)mag_field2.x,
|
|
mag_y : (int16_t)mag_field2.y,
|
|
mag_z : (int16_t)mag_field2.z,
|
|
offset_x : (int16_t)mag_offsets2.x,
|
|
offset_y : (int16_t)mag_offsets2.y,
|
|
offset_z : (int16_t)mag_offsets2.z,
|
|
motor_offset_x : (int16_t)mag_motor_offsets2.x,
|
|
motor_offset_y : (int16_t)mag_motor_offsets2.y,
|
|
motor_offset_z : (int16_t)mag_motor_offsets2.z,
|
|
health : (uint8_t)compass.healthy(1)
|
|
};
|
|
WriteBlock(&pkt2, sizeof(pkt2));
|
|
}
|
|
#endif
|
|
#if COMPASS_MAX_INSTANCES > 2
|
|
if (compass.get_count() > 2) {
|
|
const Vector3f &mag_field3 = compass.get_field(2);
|
|
const Vector3f &mag_offsets3 = compass.get_offsets(2);
|
|
const Vector3f &mag_motor_offsets3 = compass.get_motor_offsets(2);
|
|
struct log_Compass pkt3 = {
|
|
LOG_PACKET_HEADER_INIT(LOG_COMPASS3_MSG),
|
|
time_us : hal.scheduler->micros64(),
|
|
mag_x : (int16_t)mag_field3.x,
|
|
mag_y : (int16_t)mag_field3.y,
|
|
mag_z : (int16_t)mag_field3.z,
|
|
offset_x : (int16_t)mag_offsets3.x,
|
|
offset_y : (int16_t)mag_offsets3.y,
|
|
offset_z : (int16_t)mag_offsets3.z,
|
|
motor_offset_x : (int16_t)mag_motor_offsets3.x,
|
|
motor_offset_y : (int16_t)mag_motor_offsets3.y,
|
|
motor_offset_z : (int16_t)mag_motor_offsets3.z,
|
|
health : (uint8_t)compass.healthy(2)
|
|
};
|
|
WriteBlock(&pkt3, sizeof(pkt3));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Write a mode packet.
|
|
bool DataFlash_Class::Log_Write_Mode(uint8_t mode)
|
|
{
|
|
struct log_Mode pkt = {
|
|
LOG_PACKET_HEADER_INIT(LOG_MODE_MSG),
|
|
time_us : hal.scheduler->micros64(),
|
|
mode : mode,
|
|
mode_num : mode
|
|
};
|
|
return WriteCriticalBlock(&pkt, sizeof(pkt));
|
|
}
|
|
|
|
// Write ESC status messages
|
|
void DataFlash_Class::Log_Write_ESC(void)
|
|
{
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
|
|
static int _esc_status_sub = -1;
|
|
struct esc_status_s esc_status;
|
|
|
|
if (_esc_status_sub == -1) {
|
|
// subscribe to ORB topic on first call
|
|
_esc_status_sub = orb_subscribe(ORB_ID(esc_status));
|
|
}
|
|
|
|
// check for new ESC status data
|
|
bool esc_updated = false;
|
|
orb_check(_esc_status_sub, &esc_updated);
|
|
if (esc_updated && (OK == orb_copy(ORB_ID(esc_status), _esc_status_sub, &esc_status))) {
|
|
if (esc_status.esc_count > 8) {
|
|
esc_status.esc_count = 8;
|
|
}
|
|
uint64_t time_us = hal.scheduler->micros64();
|
|
for (uint8_t i = 0; i < esc_status.esc_count; i++) {
|
|
// skip logging ESCs with a esc_address of zero, and this
|
|
// are probably not populated. The Pixhawk itself should
|
|
// be address zero
|
|
if (esc_status.esc[i].esc_address != 0) {
|
|
struct log_Esc pkt = {
|
|
LOG_PACKET_HEADER_INIT((uint8_t)(LOG_ESC1_MSG + i)),
|
|
time_us : time_us,
|
|
rpm : (int16_t)(esc_status.esc[i].esc_rpm/10),
|
|
voltage : (int16_t)(esc_status.esc[i].esc_voltage*100.0f + .5f),
|
|
current : (int16_t)(esc_status.esc[i].esc_current*100.0f + .5f),
|
|
temperature : (int16_t)(esc_status.esc[i].esc_temperature*100.0f + .5f)
|
|
};
|
|
|
|
WriteBlock(&pkt, sizeof(pkt));
|
|
}
|
|
}
|
|
}
|
|
#endif // CONFIG_HAL_BOARD
|
|
}
|
|
|
|
// Write a AIRSPEED packet
|
|
void DataFlash_Class::Log_Write_Airspeed(AP_Airspeed &airspeed)
|
|
{
|
|
float temperature;
|
|
if (!airspeed.get_temperature(temperature)) {
|
|
temperature = 0;
|
|
}
|
|
struct log_AIRSPEED pkt = {
|
|
LOG_PACKET_HEADER_INIT(LOG_ARSP_MSG),
|
|
time_us : hal.scheduler->micros64(),
|
|
airspeed : airspeed.get_raw_airspeed(),
|
|
diffpressure : airspeed.get_differential_pressure(),
|
|
temperature : (int16_t)(temperature * 100.0f),
|
|
rawpressure : airspeed.get_raw_pressure(),
|
|
offset : airspeed.get_offset()
|
|
};
|
|
WriteBlock(&pkt, sizeof(pkt));
|
|
}
|
|
|
|
// Write a Yaw PID packet
|
|
void DataFlash_Class::Log_Write_PID(uint8_t msg_type, const PID_Info &info)
|
|
{
|
|
struct log_PID pkt = {
|
|
LOG_PACKET_HEADER_INIT(msg_type),
|
|
time_us : hal.scheduler->micros64(),
|
|
desired : info.desired,
|
|
P : info.P,
|
|
I : info.I,
|
|
D : info.D,
|
|
FF : info.FF,
|
|
AFF : info.AFF
|
|
};
|
|
WriteBlock(&pkt, sizeof(pkt));
|
|
}
|
|
|
|
void DataFlash_Class::Log_Write_Origin(uint8_t origin_type, const Location &loc)
|
|
{
|
|
uint64_t time_us = hal.scheduler->micros64();
|
|
struct log_ORGN pkt = {
|
|
LOG_PACKET_HEADER_INIT(LOG_ORGN_MSG),
|
|
time_us : time_us,
|
|
origin_type : origin_type,
|
|
latitude : loc.lat,
|
|
longitude : loc.lng,
|
|
altitude : loc.alt
|
|
};
|
|
WriteBlock(&pkt, sizeof(pkt));
|
|
}
|
|
|
|
void DataFlash_Class::Log_Write_RPM(const AP_RPM &rpm_sensor)
|
|
{
|
|
struct log_RPM pkt = {
|
|
LOG_PACKET_HEADER_INIT(LOG_RPM_MSG),
|
|
time_us : hal.scheduler->micros64(),
|
|
rpm1 : rpm_sensor.get_rpm(0),
|
|
rpm2 : rpm_sensor.get_rpm(1)
|
|
};
|
|
WriteBlock(&pkt, sizeof(pkt));
|
|
}
|