ardupilot/libraries/AP_Mount/AP_Gimbal.cpp
2015-12-18 18:08:37 +11:00

213 lines
8.8 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include "AP_Gimbal.h"
#if AP_AHRS_NAVEKF_AVAILABLE
#include <stdio.h>
#include <AP_Common/AP_Common.h>
#include <GCS_MAVLink/GCS.h>
#include <AP_NavEKF/AP_SmallEKF.h>
#include <AP_Math/AP_Math.h>
void AP_Gimbal::receive_feedback(mavlink_channel_t chan, mavlink_message_t *msg)
{
decode_feedback(msg);
update_state();
if (_ekf.getStatus() && !isCopterFlipped() && !is_zero(_gimbalParams.K_gimbalRate)){
send_control(chan);
}
Quaternion quatEst;_ekf.getQuat(quatEst);Vector3f eulerEst;quatEst.to_euler(eulerEst.x, eulerEst.y, eulerEst.z);
//::printf("est=%1.1f %1.1f %1.1f %d\t", eulerEst.x,eulerEst.y,eulerEst.z,_ekf.getStatus());
//::printf("joint_angles=(%+1.2f %+1.2f %+1.2f)\t", _measurement.joint_angles.x,_measurement.joint_angles.y,_measurement.joint_angles.z);
//::printf("delta_ang=(%+1.3f %+1.3f %+1.3f)\t",_measurement.delta_angles.x,_measurement.delta_angles.y,_measurement.delta_angles.z);
//::printf("delta_vel=(%+1.3f %+1.3f %+1.3f)\t",_measurement.delta_velocity.x,_measurement.delta_velocity.y,_measurement.delta_velocity.z);
//::printf("rate=(%+1.3f %+1.3f %+1.3f)\t",gimbalRateDemVec.x,gimbalRateDemVec.y,gimbalRateDemVec.z);
//::printf("target=(%+1.3f %+1.3f %+1.3f)\t",_angle_ef_target_rad.x,_angle_ef_target_rad.y,_angle_ef_target_rad.z);
//::printf("\n");
}
void AP_Gimbal::decode_feedback(mavlink_message_t *msg)
{
mavlink_msg_gimbal_report_decode(msg, &_report_msg);
_measurement.delta_time = _report_msg.delta_time;
_measurement.delta_angles.x = _report_msg.delta_angle_x;
_measurement.delta_angles.y = _report_msg.delta_angle_y;
_measurement.delta_angles.z = _report_msg.delta_angle_z;
_measurement.delta_velocity.x = _report_msg.delta_velocity_x,
_measurement.delta_velocity.y = _report_msg.delta_velocity_y;
_measurement.delta_velocity.z = _report_msg.delta_velocity_z;
_measurement.joint_angles.x = _report_msg.joint_roll;
_measurement.joint_angles.y = _report_msg.joint_el;
_measurement.joint_angles.z = _report_msg.joint_az;
//apply joint angle compensation
_measurement.joint_angles -= _gimbalParams.joint_angles_offsets;
_measurement.delta_velocity -= _gimbalParams.delta_velocity_offsets;
_measurement.delta_angles -= _gimbalParams.delta_angles_offsets;
}
/*
send a gimbal report to the GCS for display purposes
*/
void AP_Gimbal::send_report(mavlink_channel_t chan) const
{
mavlink_msg_gimbal_report_send(chan,
0, 0, // send as broadcast
_report_msg.delta_time,
_report_msg.delta_angle_x,
_report_msg.delta_angle_y,
_report_msg.delta_angle_z,
_report_msg.delta_velocity_x,
_report_msg.delta_velocity_y,
_report_msg.delta_velocity_z,
_report_msg.joint_roll,
_report_msg.joint_el,
_report_msg.joint_az);
}
void AP_Gimbal::update_state()
{
// Run the gimbal attitude and gyro bias estimator
_ekf.RunEKF(_measurement.delta_time, _measurement.delta_angles, _measurement.delta_velocity, _measurement.joint_angles);
// get the gimbal quaternion estimate
Quaternion quatEst;
_ekf.getQuat(quatEst);
// Add the control rate vectors
gimbalRateDemVec.zero();
gimbalRateDemVec += getGimbalRateDemVecYaw(quatEst);
gimbalRateDemVec += getGimbalRateDemVecTilt(quatEst);
gimbalRateDemVec += getGimbalRateDemVecForward(quatEst);
gimbalRateDemVec += getGimbalRateDemVecGyroBias();
}
Vector3f AP_Gimbal::getGimbalRateDemVecYaw(const Quaternion &quatEst)
{
// Define rotation from vehicle to gimbal using a 312 rotation sequence
Matrix3f Tvg;
float cosPhi = cosf(_measurement.joint_angles.x);
float cosTheta = cosf(_measurement.joint_angles.y);
float sinPhi = sinf(_measurement.joint_angles.x);
float sinTheta = sinf(_measurement.joint_angles.y);
float sinPsi = sinf(_measurement.joint_angles.z);
float cosPsi = cosf(_measurement.joint_angles.z);
Tvg[0][0] = cosTheta*cosPsi-sinPsi*sinPhi*sinTheta;
Tvg[1][0] = -sinPsi*cosPhi;
Tvg[2][0] = cosPsi*sinTheta+cosTheta*sinPsi*sinPhi;
Tvg[0][1] = cosTheta*sinPsi+cosPsi*sinPhi*sinTheta;
Tvg[1][1] = cosPsi*cosPhi;
Tvg[2][1] = sinPsi*sinTheta-cosTheta*cosPsi*sinPhi;
Tvg[0][2] = -sinTheta*cosPhi;
Tvg[1][2] = sinPhi;
Tvg[2][2] = cosTheta*cosPhi;
// multiply the yaw joint angle by a gain to calculate a demanded vehicle frame relative rate vector required to keep the yaw joint centred
Vector3f gimbalRateDemVecYaw;
gimbalRateDemVecYaw.z = - _gimbalParams.K_gimbalRate * _measurement.joint_angles.z;
// Get filtered vehicle turn rate in earth frame
vehicleYawRateFilt = (1.0f - yawRateFiltPole * _measurement.delta_time) * vehicleYawRateFilt + yawRateFiltPole * _measurement.delta_time * _ahrs.get_yaw_rate_earth();
Vector3f vehicle_rate_ef(0,0,vehicleYawRateFilt);
// calculate the maximum steady state rate error corresponding to the maximum permitted yaw angle error
float maxRate = _gimbalParams.K_gimbalRate * yawErrorLimit;
float vehicle_rate_mag_ef = vehicle_rate_ef.length();
float excess_rate_correction = fabsf(vehicle_rate_mag_ef) - maxRate;
if (vehicle_rate_mag_ef > maxRate) {
if (vehicle_rate_ef.z>0.0f){
gimbalRateDemVecYaw += _ahrs.get_rotation_body_to_ned().transposed()*Vector3f(0,0,excess_rate_correction);
} else {
gimbalRateDemVecYaw -= _ahrs.get_rotation_body_to_ned().transposed()*Vector3f(0,0,excess_rate_correction);
}
}
// rotate into gimbal frame to calculate the gimbal rate vector required to keep the yaw gimbal centred
gimbalRateDemVecYaw = Tvg * gimbalRateDemVecYaw;
return gimbalRateDemVecYaw;
}
Vector3f AP_Gimbal::getGimbalRateDemVecTilt(const Quaternion &quatEst)
{
// Calculate the gimbal 321 Euler angle estimates relative to earth frame
Vector3f eulerEst = quatEst.to_vector312();
// Calculate a demanded quaternion using the demanded roll and pitch and estimated yaw (yaw is slaved to the vehicle)
Quaternion quatDem;
quatDem.from_vector312( _angle_ef_target_rad.x,
_angle_ef_target_rad.y,
eulerEst.z);
//divide the demanded quaternion by the estimated to get the error
Quaternion quatErr = quatDem / quatEst;
// Convert to a delta rotation using a small angle approximation
quatErr.normalize();
Vector3f deltaAngErr;
float scaler;
if (quatErr[0] >= 0.0f) {
scaler = 2.0f;
} else {
scaler = -2.0f;
}
deltaAngErr.x = scaler * quatErr[1];
deltaAngErr.y = scaler * quatErr[2];
deltaAngErr.z = scaler * quatErr[3];
// multiply the angle error vector by a gain to calculate a demanded gimbal rate required to control tilt
Vector3f gimbalRateDemVecTilt = deltaAngErr * _gimbalParams.K_gimbalRate;
return gimbalRateDemVecTilt;
}
Vector3f AP_Gimbal::getGimbalRateDemVecForward(const Quaternion &quatEst)
{
// quaternion demanded at the previous time step
static float lastDem;
// calculate the delta rotation from the last to the current demand where the demand does not incorporate the copters yaw rotation
float delta = _angle_ef_target_rad.y - lastDem;
lastDem = _angle_ef_target_rad.y;
Vector3f gimbalRateDemVecForward;
gimbalRateDemVecForward.y = delta / _measurement.delta_time;
return gimbalRateDemVecForward;
}
Vector3f AP_Gimbal::getGimbalRateDemVecGyroBias()
{
Vector3f gyroBias;
_ekf.getGyroBias(gyroBias);
return gyroBias;
}
void AP_Gimbal::send_control(mavlink_channel_t chan)
{
mavlink_msg_gimbal_control_send(chan, mavlink_system.sysid, _compid,
gimbalRateDemVec.x, gimbalRateDemVec.y, gimbalRateDemVec.z);
}
void AP_Gimbal::update_target(Vector3f newTarget)
{
// Low-pass filter
_angle_ef_target_rad.y = _angle_ef_target_rad.y + 0.02f*(newTarget.y - _angle_ef_target_rad.y);
// Update tilt
_angle_ef_target_rad.y = constrain_float(_angle_ef_target_rad.y,radians(-90),radians(0));
}
Vector3f AP_Gimbal::getGimbalEstimateEF()
{
Quaternion quatEst;
_ekf.getQuat(quatEst);
return quatEst.to_vector312();
}
bool AP_Gimbal::isCopterFlipped()
{
return (_ahrs.cos_roll()*_ahrs.cos_pitch() < 0.5f);
}
#endif // AP_AHRS_NAVEKF_AVAILABLE