mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-24 17:48:35 -04:00
b842270196
this is a partial backport of #24132 which fixes RTK injection when the 1st GPS module is a DroneCAN RTK rover. Without this change RTCM injection for RTK fix on the base will only work if it happens to come up as the first module
908 lines
33 KiB
C++
908 lines
33 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
//
|
|
// UAVCAN GPS driver
|
|
//
|
|
#include <AP_HAL/AP_HAL.h>
|
|
|
|
#if HAL_ENABLE_LIBUAVCAN_DRIVERS
|
|
#include "AP_GPS_UAVCAN.h"
|
|
|
|
#include <AP_CANManager/AP_CANManager.h>
|
|
#include <AP_UAVCAN/AP_UAVCAN.h>
|
|
#include <GCS_MAVLink/GCS.h>
|
|
|
|
#include <AP_Logger/AP_Logger.h>
|
|
|
|
#include <uavcan/equipment/gnss/Fix2.hpp>
|
|
#include <uavcan/equipment/gnss/Auxiliary.hpp>
|
|
#include <ardupilot/gnss/Heading.hpp>
|
|
#include <ardupilot/gnss/Status.hpp>
|
|
#if GPS_MOVING_BASELINE
|
|
#include <ardupilot/gnss/MovingBaselineData.hpp>
|
|
#include <ardupilot/gnss/RelPosHeading.hpp>
|
|
#endif
|
|
|
|
#include <AP_BoardConfig/AP_BoardConfig.h>
|
|
|
|
#define GPS_PPS_EMULATION 0
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
#define GPS_UAVCAN_DEBUGGING 0
|
|
|
|
#if GPS_UAVCAN_DEBUGGING
|
|
#if defined(HAL_BUILD_AP_PERIPH)
|
|
extern "C" {
|
|
void can_printf(const char *fmt, ...);
|
|
}
|
|
# define Debug(fmt, args ...) do {can_printf("%s:%d: " fmt "\n", __FUNCTION__, __LINE__, ## args);} while(0)
|
|
#else
|
|
# define Debug(fmt, args ...) do {hal.console->printf("%s:%d: " fmt "\n", __FUNCTION__, __LINE__, ## args); hal.scheduler->delay(1); } while(0)
|
|
#endif
|
|
#else
|
|
# define Debug(fmt, args ...)
|
|
#endif
|
|
|
|
#define LOG_TAG "GPS"
|
|
|
|
UC_REGISTRY_BINDER(Fix2Cb, uavcan::equipment::gnss::Fix2);
|
|
UC_REGISTRY_BINDER(AuxCb, uavcan::equipment::gnss::Auxiliary);
|
|
UC_REGISTRY_BINDER(HeadingCb, ardupilot::gnss::Heading);
|
|
UC_REGISTRY_BINDER(StatusCb, ardupilot::gnss::Status);
|
|
#if GPS_MOVING_BASELINE
|
|
UC_REGISTRY_BINDER(MovingBaselineDataCb, ardupilot::gnss::MovingBaselineData);
|
|
UC_REGISTRY_BINDER(RelPosHeadingCb, ardupilot::gnss::RelPosHeading);
|
|
#endif
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
#define NATIVE_TIME_OFFSET (AP_HAL::micros64() - AP_HAL::native_micros64())
|
|
#else
|
|
#define NATIVE_TIME_OFFSET 0
|
|
#endif
|
|
AP_GPS_UAVCAN::DetectedModules AP_GPS_UAVCAN::_detected_modules[];
|
|
HAL_Semaphore AP_GPS_UAVCAN::_sem_registry;
|
|
|
|
// Member Methods
|
|
AP_GPS_UAVCAN::AP_GPS_UAVCAN(AP_GPS &_gps, AP_GPS::GPS_State &_state, AP_GPS::GPS_Role _role) :
|
|
AP_GPS_Backend(_gps, _state, nullptr),
|
|
interim_state(_state),
|
|
role(_role)
|
|
{
|
|
param_int_cb = FUNCTOR_BIND_MEMBER(&AP_GPS_UAVCAN::handle_param_get_set_response_int, bool, AP_UAVCAN*, const uint8_t, const char*, int32_t &);
|
|
param_float_cb = FUNCTOR_BIND_MEMBER(&AP_GPS_UAVCAN::handle_param_get_set_response_float, bool, AP_UAVCAN*, const uint8_t, const char*, float &);
|
|
param_save_cb = FUNCTOR_BIND_MEMBER(&AP_GPS_UAVCAN::handle_param_save_response, void, AP_UAVCAN*, const uint8_t, bool);
|
|
}
|
|
|
|
AP_GPS_UAVCAN::~AP_GPS_UAVCAN()
|
|
{
|
|
WITH_SEMAPHORE(_sem_registry);
|
|
|
|
_detected_modules[_detected_module].driver = nullptr;
|
|
|
|
#if GPS_MOVING_BASELINE
|
|
if (rtcm3_parser != nullptr) {
|
|
delete rtcm3_parser;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void AP_GPS_UAVCAN::subscribe_msgs(AP_UAVCAN* ap_uavcan)
|
|
{
|
|
if (ap_uavcan == nullptr) {
|
|
return;
|
|
}
|
|
|
|
auto* node = ap_uavcan->get_node();
|
|
|
|
uavcan::Subscriber<uavcan::equipment::gnss::Fix2, Fix2Cb> *gnss_fix2;
|
|
gnss_fix2 = new uavcan::Subscriber<uavcan::equipment::gnss::Fix2, Fix2Cb>(*node);
|
|
if (gnss_fix2 == nullptr) {
|
|
AP_BoardConfig::allocation_error("gnss_fix2");
|
|
}
|
|
const int gnss_fix2_start_res = gnss_fix2->start(Fix2Cb(ap_uavcan, &handle_fix2_msg_trampoline));
|
|
if (gnss_fix2_start_res < 0) {
|
|
AP_HAL::panic("UAVCAN GNSS subscriber start problem\n\r");
|
|
}
|
|
|
|
uavcan::Subscriber<uavcan::equipment::gnss::Auxiliary, AuxCb> *gnss_aux;
|
|
gnss_aux = new uavcan::Subscriber<uavcan::equipment::gnss::Auxiliary, AuxCb>(*node);
|
|
if (gnss_aux == nullptr) {
|
|
AP_BoardConfig::allocation_error("gnss_aux");
|
|
}
|
|
const int gnss_aux_start_res = gnss_aux->start(AuxCb(ap_uavcan, &handle_aux_msg_trampoline));
|
|
if (gnss_aux_start_res < 0) {
|
|
AP_HAL::panic("UAVCAN GNSS subscriber start problem\n\r");
|
|
}
|
|
|
|
uavcan::Subscriber<ardupilot::gnss::Heading, HeadingCb> *gnss_heading;
|
|
gnss_heading = new uavcan::Subscriber<ardupilot::gnss::Heading, HeadingCb>(*node);
|
|
if (gnss_heading == nullptr) {
|
|
AP_BoardConfig::allocation_error("gnss_heading");
|
|
}
|
|
const int gnss_heading_start_res = gnss_heading->start(HeadingCb(ap_uavcan, &handle_heading_msg_trampoline));
|
|
if (gnss_heading_start_res < 0) {
|
|
AP_HAL::panic("UAVCAN GNSS subscriber start problem\n\r");
|
|
}
|
|
|
|
uavcan::Subscriber<ardupilot::gnss::Status, StatusCb> *gnss_status;
|
|
gnss_status = new uavcan::Subscriber<ardupilot::gnss::Status, StatusCb>(*node);
|
|
if (gnss_status == nullptr) {
|
|
AP_BoardConfig::allocation_error("gnss_status");
|
|
}
|
|
const int gnss_status_start_res = gnss_status->start(StatusCb(ap_uavcan, &handle_status_msg_trampoline));
|
|
if (gnss_status_start_res < 0) {
|
|
AP_HAL::panic("UAVCAN GNSS subscriber start problem\n\r");
|
|
}
|
|
|
|
#if GPS_MOVING_BASELINE
|
|
uavcan::Subscriber<ardupilot::gnss::MovingBaselineData, MovingBaselineDataCb> *gnss_moving_baseline;
|
|
gnss_moving_baseline = new uavcan::Subscriber<ardupilot::gnss::MovingBaselineData, MovingBaselineDataCb>(*node);
|
|
if (gnss_moving_baseline == nullptr) {
|
|
AP_BoardConfig::allocation_error("gnss_moving_baseline");
|
|
}
|
|
const int gnss_moving_baseline_start_res = gnss_moving_baseline->start(MovingBaselineDataCb(ap_uavcan, &handle_moving_baseline_msg_trampoline));
|
|
if (gnss_moving_baseline_start_res < 0) {
|
|
AP_HAL::panic("UAVCAN GNSS subscriber start problem\n\r");
|
|
}
|
|
|
|
uavcan::Subscriber<ardupilot::gnss::RelPosHeading, RelPosHeadingCb> *gnss_relposheading;
|
|
gnss_relposheading = new uavcan::Subscriber<ardupilot::gnss::RelPosHeading, RelPosHeadingCb>(*node);
|
|
if (gnss_relposheading == nullptr) {
|
|
AP_BoardConfig::allocation_error("gnss_relposheading");
|
|
}
|
|
const int gnss_relposheading_start_res = gnss_relposheading->start(RelPosHeadingCb(ap_uavcan, &handle_relposheading_msg_trampoline));
|
|
if (gnss_relposheading_start_res < 0) {
|
|
AP_HAL::panic("UAVCAN GNSS subscriber start problem\n\r");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
AP_GPS_Backend* AP_GPS_UAVCAN::probe(AP_GPS &_gps, AP_GPS::GPS_State &_state)
|
|
{
|
|
WITH_SEMAPHORE(_sem_registry);
|
|
int8_t found_match = -1, last_match = -1;
|
|
AP_GPS_UAVCAN* backend = nullptr;
|
|
bool bad_override_config = false;
|
|
for (int8_t i = GPS_MAX_RECEIVERS - 1; i >= 0; i--) {
|
|
if (_detected_modules[i].driver == nullptr && _detected_modules[i].ap_uavcan != nullptr) {
|
|
if (_gps._override_node_id[_state.instance] != 0 &&
|
|
_gps._override_node_id[_state.instance] != _detected_modules[i].node_id) {
|
|
continue; // This device doesn't match the correct node
|
|
}
|
|
last_match = found_match;
|
|
for (uint8_t j = 0; j < GPS_MAX_RECEIVERS; j++) {
|
|
if (_detected_modules[i].node_id == _gps._override_node_id[j] &&
|
|
(j != _state.instance)) {
|
|
//wrong instance
|
|
found_match = -1;
|
|
break;
|
|
}
|
|
found_match = i;
|
|
}
|
|
|
|
// Handle Duplicate overrides
|
|
for (uint8_t j = 0; j < GPS_MAX_RECEIVERS; j++) {
|
|
if (_gps._override_node_id[i] != 0 && (i != j) &&
|
|
_gps._override_node_id[i] == _gps._override_node_id[j]) {
|
|
bad_override_config = true;
|
|
}
|
|
}
|
|
if (bad_override_config) {
|
|
GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "Same Node Id %lu set for multiple GPS", (unsigned long int)_gps._override_node_id[i].get());
|
|
last_match = i;
|
|
}
|
|
|
|
if (found_match == -1) {
|
|
found_match = last_match;
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (found_match == -1) {
|
|
return NULL;
|
|
}
|
|
// initialise the backend based on the UAVCAN Moving baseline selection
|
|
switch (_gps.get_type(_state.instance)) {
|
|
case AP_GPS::GPS_TYPE_UAVCAN:
|
|
backend = new AP_GPS_UAVCAN(_gps, _state, AP_GPS::GPS_ROLE_NORMAL);
|
|
break;
|
|
#if GPS_MOVING_BASELINE
|
|
case AP_GPS::GPS_TYPE_UAVCAN_RTK_BASE:
|
|
backend = new AP_GPS_UAVCAN(_gps, _state, AP_GPS::GPS_ROLE_MB_BASE);
|
|
break;
|
|
case AP_GPS::GPS_TYPE_UAVCAN_RTK_ROVER:
|
|
backend = new AP_GPS_UAVCAN(_gps, _state, AP_GPS::GPS_ROLE_MB_ROVER);
|
|
break;
|
|
#endif
|
|
default:
|
|
return NULL;
|
|
}
|
|
if (backend == nullptr) {
|
|
AP::can().log_text(AP_CANManager::LOG_ERROR,
|
|
LOG_TAG,
|
|
"Failed to register UAVCAN GPS Node %d on Bus %d\n",
|
|
_detected_modules[found_match].node_id,
|
|
_detected_modules[found_match].ap_uavcan->get_driver_index());
|
|
} else {
|
|
_detected_modules[found_match].driver = backend;
|
|
backend->_detected_module = found_match;
|
|
AP::can().log_text(AP_CANManager::LOG_INFO,
|
|
LOG_TAG,
|
|
"Registered UAVCAN GPS Node %d on Bus %d as instance %d\n",
|
|
_detected_modules[found_match].node_id,
|
|
_detected_modules[found_match].ap_uavcan->get_driver_index(),
|
|
_state.instance);
|
|
snprintf(backend->_name, ARRAY_SIZE(backend->_name), "UAVCAN%u-%u", _detected_modules[found_match].ap_uavcan->get_driver_index()+1, _detected_modules[found_match].node_id);
|
|
_detected_modules[found_match].instance = _state.instance;
|
|
for (uint8_t i=0; i < GPS_MAX_RECEIVERS; i++) {
|
|
if (_detected_modules[found_match].node_id == AP::gps()._node_id[i]) {
|
|
if (i == _state.instance) {
|
|
// Nothing to do here
|
|
break;
|
|
}
|
|
// else swap
|
|
uint8_t tmp = AP::gps()._node_id[_state.instance].get();
|
|
AP::gps()._node_id[_state.instance].set_and_notify(_detected_modules[found_match].node_id);
|
|
AP::gps()._node_id[i].set_and_notify(tmp);
|
|
}
|
|
}
|
|
#if GPS_MOVING_BASELINE
|
|
if (backend->role == AP_GPS::GPS_ROLE_MB_BASE) {
|
|
backend->rtcm3_parser = new RTCM3_Parser;
|
|
if (backend->rtcm3_parser == nullptr) {
|
|
GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "UAVCAN%u-%u: failed RTCMv3 parser allocation", _detected_modules[found_match].ap_uavcan->get_driver_index()+1, _detected_modules[found_match].node_id);
|
|
}
|
|
}
|
|
#endif // GPS_MOVING_BASELINE
|
|
}
|
|
|
|
return backend;
|
|
}
|
|
|
|
bool AP_GPS_UAVCAN::backends_healthy(char failure_msg[], uint16_t failure_msg_len)
|
|
{
|
|
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS; i++) {
|
|
bool overriden_node_found = false;
|
|
bool bad_override_config = false;
|
|
if (AP::gps()._override_node_id[i] == 0) {
|
|
//anything goes
|
|
continue;
|
|
}
|
|
for (uint8_t j = 0; j < GPS_MAX_RECEIVERS; j++) {
|
|
if (AP::gps()._override_node_id[i] == AP::gps()._override_node_id[j] && (i != j)) {
|
|
bad_override_config = true;
|
|
break;
|
|
}
|
|
if (i == _detected_modules[j].instance && _detected_modules[j].driver) {
|
|
if (AP::gps()._override_node_id[i] == _detected_modules[j].node_id) {
|
|
overriden_node_found = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (bad_override_config) {
|
|
snprintf(failure_msg, failure_msg_len, "Same Node Id %lu set for multiple GPS", (unsigned long int)AP::gps()._override_node_id[i].get());
|
|
return false;
|
|
}
|
|
|
|
if (!overriden_node_found) {
|
|
snprintf(failure_msg, failure_msg_len, "Selected GPS Node %lu not set as instance %d", (unsigned long int)AP::gps()._override_node_id[i].get(), i + 1);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
AP_GPS_UAVCAN* AP_GPS_UAVCAN::get_uavcan_backend(AP_UAVCAN* ap_uavcan, uint8_t node_id)
|
|
{
|
|
if (ap_uavcan == nullptr) {
|
|
return nullptr;
|
|
}
|
|
|
|
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS; i++) {
|
|
if (_detected_modules[i].driver != nullptr &&
|
|
_detected_modules[i].ap_uavcan == ap_uavcan &&
|
|
_detected_modules[i].node_id == node_id) {
|
|
return _detected_modules[i].driver;
|
|
}
|
|
}
|
|
|
|
bool already_detected = false;
|
|
// Check if there's an empty spot for possible registeration
|
|
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS; i++) {
|
|
if (_detected_modules[i].ap_uavcan == ap_uavcan && _detected_modules[i].node_id == node_id) {
|
|
// Already Detected
|
|
already_detected = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!already_detected) {
|
|
for (uint8_t i = 0; i < GPS_MAX_RECEIVERS; i++) {
|
|
if (_detected_modules[i].ap_uavcan == nullptr) {
|
|
_detected_modules[i].ap_uavcan = ap_uavcan;
|
|
_detected_modules[i].node_id = node_id;
|
|
// Just set the Node ID in order of appearance
|
|
// This will be used to set select ids
|
|
AP::gps()._node_id[i].set_and_notify(node_id);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
struct DetectedModules tempslot;
|
|
// Sort based on the node_id, larger values first
|
|
// we do this, so that we have repeatable GPS
|
|
// registration
|
|
for (uint8_t i = 1; i < GPS_MAX_RECEIVERS; i++) {
|
|
for (uint8_t j = i; j > 0; j--) {
|
|
if (_detected_modules[j].node_id > _detected_modules[j-1].node_id) {
|
|
tempslot = _detected_modules[j];
|
|
_detected_modules[j] = _detected_modules[j-1];
|
|
_detected_modules[j-1] = tempslot;
|
|
// also fix the _detected_module in the driver so that RTCM injection
|
|
// can determine if it has the bus to itself
|
|
if (_detected_modules[j].driver) {
|
|
_detected_modules[j].driver->_detected_module = j;
|
|
}
|
|
if (_detected_modules[j-1].driver) {
|
|
_detected_modules[j-1].driver->_detected_module = j-1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/*
|
|
handle velocity element of message
|
|
*/
|
|
void AP_GPS_UAVCAN::handle_velocity(const float vx, const float vy, const float vz)
|
|
{
|
|
if (!uavcan::isNaN(vx)) {
|
|
const Vector3f vel(vx, vy, vz);
|
|
interim_state.velocity = vel;
|
|
velocity_to_speed_course(interim_state);
|
|
// assume we have vertical velocity if we ever get a non-zero Z velocity
|
|
if (!isnan(vel.z) && !is_zero(vel.z)) {
|
|
interim_state.have_vertical_velocity = true;
|
|
} else {
|
|
interim_state.have_vertical_velocity = state.have_vertical_velocity;
|
|
}
|
|
} else {
|
|
interim_state.have_vertical_velocity = false;
|
|
}
|
|
}
|
|
|
|
void AP_GPS_UAVCAN::handle_fix2_msg(const Fix2Cb &cb)
|
|
{
|
|
bool process = false;
|
|
seen_fix2 = true;
|
|
|
|
WITH_SEMAPHORE(sem);
|
|
|
|
if (cb.msg->status == uavcan::equipment::gnss::Fix2::STATUS_NO_FIX) {
|
|
interim_state.status = AP_GPS::GPS_Status::NO_FIX;
|
|
} else {
|
|
if (cb.msg->status == uavcan::equipment::gnss::Fix2::STATUS_TIME_ONLY) {
|
|
interim_state.status = AP_GPS::GPS_Status::NO_FIX;
|
|
} else if (cb.msg->status == uavcan::equipment::gnss::Fix2::STATUS_2D_FIX) {
|
|
interim_state.status = AP_GPS::GPS_Status::GPS_OK_FIX_2D;
|
|
process = true;
|
|
} else if (cb.msg->status == uavcan::equipment::gnss::Fix2::STATUS_3D_FIX) {
|
|
interim_state.status = AP_GPS::GPS_Status::GPS_OK_FIX_3D;
|
|
process = true;
|
|
}
|
|
|
|
if (cb.msg->gnss_time_standard == uavcan::equipment::gnss::Fix2::GNSS_TIME_STANDARD_UTC) {
|
|
uint64_t epoch_ms = uavcan::UtcTime(cb.msg->gnss_timestamp).toUSec();
|
|
if (epoch_ms != 0) {
|
|
epoch_ms /= 1000;
|
|
uint64_t gps_ms = epoch_ms - UNIX_OFFSET_MSEC;
|
|
interim_state.time_week = (uint16_t)(gps_ms / AP_MSEC_PER_WEEK);
|
|
interim_state.time_week_ms = (uint32_t)(gps_ms - (interim_state.time_week) * AP_MSEC_PER_WEEK);
|
|
}
|
|
}
|
|
|
|
if (interim_state.status == AP_GPS::GPS_Status::GPS_OK_FIX_3D) {
|
|
if (cb.msg->mode == uavcan::equipment::gnss::Fix2::MODE_DGPS) {
|
|
interim_state.status = AP_GPS::GPS_Status::GPS_OK_FIX_3D_DGPS;
|
|
} else if (cb.msg->mode == uavcan::equipment::gnss::Fix2::MODE_RTK) {
|
|
if (cb.msg->sub_mode == uavcan::equipment::gnss::Fix2::SUB_MODE_RTK_FLOAT) {
|
|
interim_state.status = AP_GPS::GPS_Status::GPS_OK_FIX_3D_RTK_FLOAT;
|
|
} else if (cb.msg->sub_mode == uavcan::equipment::gnss::Fix2::SUB_MODE_RTK_FIXED) {
|
|
interim_state.status = AP_GPS::GPS_Status::GPS_OK_FIX_3D_RTK_FIXED;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (process) {
|
|
Location loc = { };
|
|
loc.lat = cb.msg->latitude_deg_1e8 / 10;
|
|
loc.lng = cb.msg->longitude_deg_1e8 / 10;
|
|
loc.alt = cb.msg->height_msl_mm / 10;
|
|
interim_state.have_undulation = true;
|
|
interim_state.undulation = (cb.msg->height_msl_mm - cb.msg->height_ellipsoid_mm) * 0.001;
|
|
interim_state.location = loc;
|
|
|
|
handle_velocity(cb.msg->ned_velocity[0], cb.msg->ned_velocity[1], cb.msg->ned_velocity[2]);
|
|
|
|
if (cb.msg->covariance.size() == 6) {
|
|
if (!uavcan::isNaN(cb.msg->covariance[0])) {
|
|
interim_state.horizontal_accuracy = sqrtf(cb.msg->covariance[0]);
|
|
interim_state.have_horizontal_accuracy = true;
|
|
} else {
|
|
interim_state.have_horizontal_accuracy = false;
|
|
}
|
|
if (!uavcan::isNaN(cb.msg->covariance[2])) {
|
|
interim_state.vertical_accuracy = sqrtf(cb.msg->covariance[2]);
|
|
interim_state.have_vertical_accuracy = true;
|
|
} else {
|
|
interim_state.have_vertical_accuracy = false;
|
|
}
|
|
if (!uavcan::isNaN(cb.msg->covariance[3]) &&
|
|
!uavcan::isNaN(cb.msg->covariance[4]) &&
|
|
!uavcan::isNaN(cb.msg->covariance[5])) {
|
|
interim_state.speed_accuracy = sqrtf((cb.msg->covariance[3] + cb.msg->covariance[4] + cb.msg->covariance[5])/3);
|
|
interim_state.have_speed_accuracy = true;
|
|
} else {
|
|
interim_state.have_speed_accuracy = false;
|
|
}
|
|
}
|
|
|
|
interim_state.num_sats = cb.msg->sats_used;
|
|
} else {
|
|
interim_state.have_vertical_velocity = false;
|
|
interim_state.have_vertical_accuracy = false;
|
|
interim_state.have_horizontal_accuracy = false;
|
|
interim_state.have_speed_accuracy = false;
|
|
interim_state.num_sats = 0;
|
|
}
|
|
|
|
if (!seen_aux) {
|
|
// if we haven't seen an Aux message then populate vdop and
|
|
// hdop from pdop. Some GPS modules don't provide the Aux message
|
|
interim_state.hdop = interim_state.vdop = cb.msg->pdop * 100.0;
|
|
}
|
|
|
|
if ((cb.msg->timestamp.usec > cb.msg->gnss_timestamp.usec) && (cb.msg->gnss_timestamp.usec > 0)) {
|
|
// we have a valid timestamp based on gnss_timestamp timescale, we can use that to correct our gps message time
|
|
interim_state.last_corrected_gps_time_us = jitter_correction.correct_offboard_timestamp_usec(cb.msg->timestamp.usec, (cb.msg->getUtcTimestamp().toUSec() + NATIVE_TIME_OFFSET));
|
|
interim_state.last_gps_time_ms = interim_state.last_corrected_gps_time_us/1000U;
|
|
interim_state.last_corrected_gps_time_us -= cb.msg->timestamp.usec - cb.msg->gnss_timestamp.usec;
|
|
// this is also the time the message was received on the UART on other end.
|
|
interim_state.corrected_timestamp_updated = true;
|
|
} else {
|
|
interim_state.last_gps_time_ms = jitter_correction.correct_offboard_timestamp_usec(cb.msg->timestamp.usec, cb.msg->getUtcTimestamp().toUSec() + NATIVE_TIME_OFFSET)/1000U;
|
|
}
|
|
|
|
#if GPS_PPS_EMULATION
|
|
// Emulates a PPS signal, can be used to check how close are we to real GPS time
|
|
static virtual_timer_t timeout_vt;
|
|
hal.gpio->pinMode(51, 1);
|
|
auto handle_timeout = [](void *arg)
|
|
{
|
|
(void)arg;
|
|
//we are called from ISR context
|
|
chSysLockFromISR();
|
|
hal.gpio->toggle(51);
|
|
chSysUnlockFromISR();
|
|
};
|
|
|
|
static uint64_t next_toggle, last_toggle;
|
|
|
|
next_toggle = (cb.msg->timestamp.usec) + (1000000ULL - ((cb.msg->timestamp.usec) % 1000000ULL));
|
|
|
|
next_toggle += jitter_correction.get_link_offset_usec();
|
|
if (next_toggle != last_toggle) {
|
|
chVTSet(&timeout_vt, chTimeUS2I(next_toggle - AP_HAL::micros64()), handle_timeout, nullptr);
|
|
last_toggle = next_toggle;
|
|
}
|
|
#endif
|
|
|
|
_new_data = true;
|
|
if (!seen_message) {
|
|
if (interim_state.status == AP_GPS::GPS_Status::NO_GPS) {
|
|
// the first time we see a fix message we change from
|
|
// NO_GPS to NO_FIX, indicating to user that a UAVCAN GPS
|
|
// has been seen
|
|
interim_state.status = AP_GPS::GPS_Status::NO_FIX;
|
|
}
|
|
seen_message = true;
|
|
}
|
|
}
|
|
|
|
void AP_GPS_UAVCAN::handle_aux_msg(const AuxCb &cb)
|
|
{
|
|
WITH_SEMAPHORE(sem);
|
|
|
|
if (!uavcan::isNaN(cb.msg->hdop)) {
|
|
seen_aux = true;
|
|
interim_state.hdop = cb.msg->hdop * 100.0;
|
|
}
|
|
|
|
if (!uavcan::isNaN(cb.msg->vdop)) {
|
|
seen_aux = true;
|
|
interim_state.vdop = cb.msg->vdop * 100.0;
|
|
}
|
|
}
|
|
|
|
void AP_GPS_UAVCAN::handle_heading_msg(const HeadingCb &cb)
|
|
{
|
|
#if GPS_MOVING_BASELINE
|
|
if (seen_relposheading && gps.mb_params[interim_state.instance].type.get() != 0) {
|
|
// we prefer to use the relposheading to get yaw as it allows
|
|
// the user to more easily control the relative antenna positions
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
WITH_SEMAPHORE(sem);
|
|
|
|
if (interim_state.gps_yaw_configured == false) {
|
|
interim_state.gps_yaw_configured = cb.msg->heading_valid;
|
|
}
|
|
|
|
interim_state.have_gps_yaw = cb.msg->heading_valid;
|
|
interim_state.gps_yaw = degrees(cb.msg->heading_rad);
|
|
if (interim_state.have_gps_yaw) {
|
|
interim_state.gps_yaw_time_ms = AP_HAL::millis();
|
|
}
|
|
|
|
interim_state.have_gps_yaw_accuracy = cb.msg->heading_accuracy_valid;
|
|
interim_state.gps_yaw_accuracy = degrees(cb.msg->heading_accuracy_rad);
|
|
}
|
|
|
|
void AP_GPS_UAVCAN::handle_status_msg(const StatusCb &cb)
|
|
{
|
|
WITH_SEMAPHORE(sem);
|
|
|
|
seen_status = true;
|
|
|
|
healthy = cb.msg->healthy;
|
|
status_flags = cb.msg->status;
|
|
if (error_code != cb.msg->error_codes) {
|
|
AP::logger().Write_MessageF("GPS %d: error changed (0x%08x/0x%08x)",
|
|
(unsigned int)(state.instance + 1),
|
|
error_code,
|
|
cb.msg->error_codes);
|
|
error_code = cb.msg->error_codes;
|
|
}
|
|
}
|
|
|
|
#if GPS_MOVING_BASELINE
|
|
/*
|
|
handle moving baseline data.
|
|
*/
|
|
void AP_GPS_UAVCAN::handle_moving_baseline_msg(const MovingBaselineDataCb &cb, uint8_t node_id)
|
|
{
|
|
WITH_SEMAPHORE(sem);
|
|
if (role != AP_GPS::GPS_ROLE_MB_BASE) {
|
|
GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "Incorrect Role set for UAVCAN GPS, %d should be Base", node_id);
|
|
return;
|
|
}
|
|
|
|
if (rtcm3_parser == nullptr) {
|
|
return;
|
|
}
|
|
for (const auto &c : cb.msg->data) {
|
|
rtcm3_parser->read(c);
|
|
}
|
|
}
|
|
|
|
/*
|
|
handle relposheading message
|
|
*/
|
|
void AP_GPS_UAVCAN::handle_relposheading_msg(const RelPosHeadingCb &cb, uint8_t node_id)
|
|
{
|
|
WITH_SEMAPHORE(sem);
|
|
|
|
interim_state.gps_yaw_configured = true;
|
|
seen_relposheading = true;
|
|
// push raw heading data to calculate moving baseline heading states
|
|
if (calculate_moving_base_yaw(interim_state,
|
|
cb.msg->reported_heading_deg,
|
|
cb.msg->relative_distance_m,
|
|
cb.msg->relative_down_pos_m)) {
|
|
if (cb.msg->reported_heading_acc_available) {
|
|
interim_state.gps_yaw_accuracy = cb.msg->reported_heading_acc_deg;
|
|
}
|
|
interim_state.have_gps_yaw_accuracy = cb.msg->reported_heading_acc_available;
|
|
}
|
|
}
|
|
|
|
// support for retrieving RTCMv3 data from a moving baseline base
|
|
bool AP_GPS_UAVCAN::get_RTCMV3(const uint8_t *&bytes, uint16_t &len)
|
|
{
|
|
WITH_SEMAPHORE(sem);
|
|
if (rtcm3_parser != nullptr) {
|
|
len = rtcm3_parser->get_len(bytes);
|
|
return len > 0;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// clear previous RTCM3 packet
|
|
void AP_GPS_UAVCAN::clear_RTCMV3(void)
|
|
{
|
|
WITH_SEMAPHORE(sem);
|
|
if (rtcm3_parser != nullptr) {
|
|
rtcm3_parser->clear_packet();
|
|
}
|
|
}
|
|
|
|
#endif // GPS_MOVING_BASELINE
|
|
|
|
void AP_GPS_UAVCAN::handle_fix2_msg_trampoline(AP_UAVCAN* ap_uavcan, uint8_t node_id, const Fix2Cb &cb)
|
|
{
|
|
WITH_SEMAPHORE(_sem_registry);
|
|
|
|
AP_GPS_UAVCAN* driver = get_uavcan_backend(ap_uavcan, node_id);
|
|
if (driver != nullptr) {
|
|
driver->handle_fix2_msg(cb);
|
|
}
|
|
}
|
|
|
|
void AP_GPS_UAVCAN::handle_aux_msg_trampoline(AP_UAVCAN* ap_uavcan, uint8_t node_id, const AuxCb &cb)
|
|
{
|
|
WITH_SEMAPHORE(_sem_registry);
|
|
|
|
AP_GPS_UAVCAN* driver = get_uavcan_backend(ap_uavcan, node_id);
|
|
if (driver != nullptr) {
|
|
driver->handle_aux_msg(cb);
|
|
}
|
|
}
|
|
|
|
void AP_GPS_UAVCAN::handle_heading_msg_trampoline(AP_UAVCAN* ap_uavcan, uint8_t node_id, const HeadingCb &cb)
|
|
{
|
|
WITH_SEMAPHORE(_sem_registry);
|
|
|
|
AP_GPS_UAVCAN* driver = get_uavcan_backend(ap_uavcan, node_id);
|
|
if (driver != nullptr) {
|
|
driver->handle_heading_msg(cb);
|
|
}
|
|
}
|
|
|
|
void AP_GPS_UAVCAN::handle_status_msg_trampoline(AP_UAVCAN* ap_uavcan, uint8_t node_id, const StatusCb &cb)
|
|
{
|
|
WITH_SEMAPHORE(_sem_registry);
|
|
|
|
AP_GPS_UAVCAN* driver = get_uavcan_backend(ap_uavcan, node_id);
|
|
if (driver != nullptr) {
|
|
driver->handle_status_msg(cb);
|
|
}
|
|
}
|
|
|
|
#if GPS_MOVING_BASELINE
|
|
// Moving Baseline msg trampoline
|
|
void AP_GPS_UAVCAN::handle_moving_baseline_msg_trampoline(AP_UAVCAN* ap_uavcan, uint8_t node_id, const MovingBaselineDataCb &cb)
|
|
{
|
|
WITH_SEMAPHORE(_sem_registry);
|
|
AP_GPS_UAVCAN* driver = get_uavcan_backend(ap_uavcan, node_id);
|
|
if (driver != nullptr) {
|
|
driver->handle_moving_baseline_msg(cb, node_id);
|
|
}
|
|
}
|
|
|
|
// RelPosHeading msg trampoline
|
|
void AP_GPS_UAVCAN::handle_relposheading_msg_trampoline(AP_UAVCAN* ap_uavcan, uint8_t node_id, const RelPosHeadingCb &cb)
|
|
{
|
|
WITH_SEMAPHORE(_sem_registry);
|
|
AP_GPS_UAVCAN* driver = get_uavcan_backend(ap_uavcan, node_id);
|
|
if (driver != nullptr) {
|
|
driver->handle_relposheading_msg(cb, node_id);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
bool AP_GPS_UAVCAN::do_config()
|
|
{
|
|
AP_UAVCAN *ap_uavcan = _detected_modules[_detected_module].ap_uavcan;
|
|
if (ap_uavcan == nullptr) {
|
|
return false;
|
|
}
|
|
uint8_t node_id = _detected_modules[_detected_module].node_id;
|
|
|
|
switch(cfg_step) {
|
|
case STEP_SET_TYPE:
|
|
ap_uavcan->get_parameter_on_node(node_id, "GPS_TYPE", ¶m_int_cb);
|
|
break;
|
|
case STEP_SET_MB_CAN_TX:
|
|
if (role != AP_GPS::GPS_Role::GPS_ROLE_NORMAL) {
|
|
ap_uavcan->get_parameter_on_node(node_id, "GPS_MB_ONLY_PORT", ¶m_int_cb);
|
|
} else {
|
|
cfg_step++;
|
|
}
|
|
break;
|
|
case STEP_SAVE_AND_REBOOT:
|
|
if (requires_save_and_reboot) {
|
|
ap_uavcan->save_parameters_on_node(node_id, ¶m_save_cb);
|
|
} else {
|
|
cfg_step++;
|
|
}
|
|
break;
|
|
case STEP_FINISHED:
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Consume new data and mark it received
|
|
bool AP_GPS_UAVCAN::read(void)
|
|
{
|
|
if (gps._auto_config >= AP_GPS::GPS_AUTO_CONFIG_ENABLE_ALL) {
|
|
if (!do_config()) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
WITH_SEMAPHORE(sem);
|
|
if (_new_data) {
|
|
_new_data = false;
|
|
|
|
// the encoding of accuracies in UAVCAN can result in infinite
|
|
// values. These cause problems with blending. Use 1000m and 1000m/s instead
|
|
interim_state.horizontal_accuracy = MIN(interim_state.horizontal_accuracy, 1000.0);
|
|
interim_state.vertical_accuracy = MIN(interim_state.vertical_accuracy, 1000.0);
|
|
interim_state.speed_accuracy = MIN(interim_state.speed_accuracy, 1000.0);
|
|
|
|
state = interim_state;
|
|
if (interim_state.last_corrected_gps_time_us) {
|
|
// If we were able to get a valid last_corrected_gps_time_us
|
|
// we have had a valid GPS message time, from which we calculate
|
|
// the time of week.
|
|
_last_itow_ms = interim_state.time_week_ms;
|
|
_have_itow = true;
|
|
}
|
|
return true;
|
|
}
|
|
if (!seen_message) {
|
|
// start with NO_GPS until we get first packet
|
|
state.status = AP_GPS::GPS_Status::NO_GPS;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool AP_GPS_UAVCAN::is_healthy(void) const
|
|
{
|
|
// if we don't have any health reports, assume it's healthy
|
|
if (!seen_status) {
|
|
return true;
|
|
}
|
|
return healthy;
|
|
}
|
|
|
|
bool AP_GPS_UAVCAN::logging_healthy(void) const
|
|
{
|
|
// if we don't have status, assume it's valid
|
|
if (!seen_status) {
|
|
return true;
|
|
}
|
|
|
|
return (status_flags & ardupilot::gnss::Status::STATUS_LOGGING) != 0;
|
|
}
|
|
|
|
bool AP_GPS_UAVCAN::is_configured(void) const
|
|
{
|
|
// if we don't have status assume it's configured
|
|
if (!seen_status) {
|
|
return true;
|
|
}
|
|
|
|
return (status_flags & ardupilot::gnss::Status::STATUS_ARMABLE) != 0;
|
|
}
|
|
|
|
/*
|
|
handle RTCM data from MAVLink GPS_RTCM_DATA, forwarding it over MAVLink
|
|
*/
|
|
void AP_GPS_UAVCAN::inject_data(const uint8_t *data, uint16_t len)
|
|
{
|
|
// we only handle this if we are the first UAVCAN GPS or we are
|
|
// using a different uavcan instance than the first GPS, as we
|
|
// send the data as broadcast on all UAVCAN devive ports and we
|
|
// don't want to send duplicates
|
|
const uint32_t now_ms = AP_HAL::millis();
|
|
if (_detected_module == 0 ||
|
|
_detected_modules[_detected_module].ap_uavcan != _detected_modules[0].ap_uavcan ||
|
|
now_ms - _detected_modules[0].last_inject_ms > 2000) {
|
|
_detected_modules[_detected_module].ap_uavcan->send_RTCMStream(data, len);
|
|
_detected_modules[_detected_module].last_inject_ms = now_ms;
|
|
}
|
|
}
|
|
|
|
/*
|
|
handle param get/set response
|
|
*/
|
|
bool AP_GPS_UAVCAN::handle_param_get_set_response_int(AP_UAVCAN* ap_uavcan, uint8_t node_id, const char* name, int32_t &value)
|
|
{
|
|
Debug("AP_GPS_UAVCAN: param set/get response from %d %s %ld\n", node_id, name, value);
|
|
if (strcmp(name, "GPS_TYPE") == 0 && cfg_step == STEP_SET_TYPE) {
|
|
if (role == AP_GPS::GPS_ROLE_MB_BASE && value != AP_GPS::GPS_TYPE_UBLOX_RTK_BASE) {
|
|
value = (int32_t)AP_GPS::GPS_TYPE_UBLOX_RTK_BASE;
|
|
requires_save_and_reboot = true;
|
|
return true;
|
|
} else if (role == AP_GPS::GPS_ROLE_MB_ROVER && value != AP_GPS::GPS_TYPE_UBLOX_RTK_ROVER) {
|
|
value = (int32_t)AP_GPS::GPS_TYPE_UBLOX_RTK_ROVER;
|
|
requires_save_and_reboot = true;
|
|
return true;
|
|
} else {
|
|
cfg_step++;
|
|
}
|
|
}
|
|
|
|
if (strcmp(name, "GPS_MB_ONLY_PORT") == 0 && cfg_step == STEP_SET_MB_CAN_TX) {
|
|
if (option_set(AP_GPS::UAVCAN_MBUseDedicatedBus) && !value) {
|
|
// set up so that another CAN port is used for the Moving Baseline Data
|
|
// setting this value will allow another CAN port to be used as dedicated
|
|
// line for the Moving Baseline Data
|
|
value = 1;
|
|
requires_save_and_reboot = true;
|
|
return true;
|
|
} else if (!option_set(AP_GPS::UAVCAN_MBUseDedicatedBus) && value) {
|
|
// set up so that all CAN ports are used for the Moving Baseline Data
|
|
value = 0;
|
|
requires_save_and_reboot = true;
|
|
return true;
|
|
} else {
|
|
cfg_step++;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool AP_GPS_UAVCAN::handle_param_get_set_response_float(AP_UAVCAN* ap_uavcan, uint8_t node_id, const char* name, float &value)
|
|
{
|
|
Debug("AP_GPS_UAVCAN: param set/get response from %d %s %f\n", node_id, name, value);
|
|
return false;
|
|
}
|
|
|
|
void AP_GPS_UAVCAN::handle_param_save_response(AP_UAVCAN* ap_uavcan, const uint8_t node_id, bool success)
|
|
{
|
|
Debug("AP_GPS_UAVCAN: param save response from %d %s\n", node_id, success ? "success" : "failure");
|
|
|
|
if (cfg_step != STEP_SAVE_AND_REBOOT) {
|
|
return;
|
|
}
|
|
|
|
if (success) {
|
|
cfg_step++;
|
|
}
|
|
// Also send reboot command
|
|
// this is ok as we are sending from UAVCAN thread context
|
|
Debug("AP_GPS_UAVCAN: sending reboot command %d\n", node_id);
|
|
ap_uavcan->send_reboot_request(node_id);
|
|
}
|
|
|
|
#if AP_DRONECAN_SEND_GPS
|
|
bool AP_GPS_UAVCAN::instance_exists(const AP_UAVCAN* ap_uavcan)
|
|
{
|
|
for (uint8_t i=0; i<ARRAY_SIZE(_detected_modules); i++) {
|
|
if (ap_uavcan == _detected_modules[i].ap_uavcan) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
#endif // AP_DRONECAN_SEND_GPS
|
|
|
|
#endif // HAL_ENABLE_LIBUAVCAN_DRIVERS
|