ardupilot/ArducopterNG/Navigation.pde

152 lines
5.4 KiB
Plaintext

/*
www.ArduCopter.com - www.DIYDrones.com
Copyright (c) 2010. All rights reserved.
An Open Source Arduino based multicopter.
File : Navigation.pde
Version : v1.0, Aug 27, 2010
Author(s): ArduCopter Team
Ted Carancho (aeroquad), Jose Julio, Jordi Muñoz,
Jani Hirvinen, Ken McEwans, Roberto Navoni,
Sandro Benigno, Chris Anderson
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
* ************************************************************** *
ChangeLog:
* ************************************************************** *
TODO:
- initial functions.
* ************************************************************** */
void read_GPS_data()
{
#ifdef IsGPS
GPS_timer_old=GPS_timer; // Update GPS timer
GPS_timer = millis();
GPS_Dt = (GPS_timer-GPS_timer_old)*0.001; // GPS_Dt
GPS.NewData=0; // We Reset the flag...
// Write GPS data to DataFlash log
Log_Write_GPS(GPS.Time, GPS.Lattitude, GPS.Longitude, GPS.Altitude, GPS.Altitude, GPS.Ground_Speed, GPS.Ground_Course, GPS.Fix, GPS.NumSats);
//if (GPS.Fix >= 2)
if (GPS.Fix)
digitalWrite(LED_Red,HIGH); // GPS Fix => RED LED
else
digitalWrite(LED_Red,LOW);
#endif
}
/* GPS based Position control */
void Position_control(long lat_dest, long lon_dest)
{
#ifdef IsGPS
long Lon_diff;
long Lat_diff;
Lon_diff = lon_dest - GPS.Longitude;
Lat_diff = lat_dest - GPS.Lattitude;
//If we have not calculated GEOG_CORRECTION_FACTOR we calculate it here as cos(lattitude)
if (GEOG_CORRECTION_FACTOR==0)
GEOG_CORRECTION_FACTOR = cos(ToRad(GPS.Lattitude/10000000.0));
// ROLL
//Optimization : cos(yaw) = DCM_Matrix[0][0] ; sin(yaw) = DCM_Matrix[1][0] [This simplification is valid for low roll angles]
gps_err_roll = (float)Lon_diff * GEOG_CORRECTION_FACTOR * DCM_Matrix[0][0] - (float)Lat_diff * DCM_Matrix[1][0];
gps_roll_D = (gps_err_roll-gps_err_roll_old) / GPS_Dt;
gps_err_roll_old = gps_err_roll;
gps_roll_I += gps_err_roll * GPS_Dt;
gps_roll_I = constrain(gps_roll_I, -800, 800);
command_gps_roll = KP_GPS_ROLL * gps_err_roll + KD_GPS_ROLL * gps_roll_D + KI_GPS_ROLL * gps_roll_I;
command_gps_roll = constrain(command_gps_roll, -GPS_MAX_ANGLE, GPS_MAX_ANGLE); // Limit max command
//Log_Write_PID(1,KP_GPS_ROLL*gps_err_roll*10,KI_GPS_ROLL*gps_roll_I*10,KD_GPS_ROLL*gps_roll_D*10,command_gps_roll*10);
// PITCH
gps_err_pitch = -(float)Lat_diff * DCM_Matrix[0][0] - (float)Lon_diff * GEOG_CORRECTION_FACTOR * DCM_Matrix[1][0];
gps_pitch_D = (gps_err_pitch - gps_err_pitch_old) / GPS_Dt;
gps_err_pitch_old = gps_err_pitch;
gps_pitch_I += gps_err_pitch * GPS_Dt;
gps_pitch_I = constrain(gps_pitch_I, -800, 800);
command_gps_pitch = KP_GPS_PITCH * gps_err_pitch + KD_GPS_PITCH * gps_pitch_D + KI_GPS_PITCH * gps_pitch_I;
command_gps_pitch = constrain(command_gps_pitch, -GPS_MAX_ANGLE, GPS_MAX_ANGLE); // Limit max command
//Log_Write_PID(2,KP_GPS_PITCH*gps_err_pitch*10,KI_GPS_PITCH*gps_pitch_I*10,KD_GPS_PITCH*gps_pitch_D*10,command_gps_pitch*10);
#endif
}
void Reset_I_terms_navigation()
{
altitude_I = 0;
gps_roll_I = 0;
gps_pitch_I = 0;
}
/* ************************************************************ */
/* Altitude control... (based on barometer) */
int Altitude_control_baro(int altitude, int target_altitude)
{
#define ALTITUDE_CONTROL_BARO_OUTPUT_MIN 40
#define ALTITUDE_CONTROL_BARO_OUTPUT_MAX 80
#define KP_BARO_ALTITUDE 0.25 //0.3
#define KD_BARO_ALTITUDE 0.09 //0.09
#define KI_BARO_ALTITUDE 0.1
int command_altitude;
err_altitude_old = err_altitude;
err_altitude = target_altitude - altitude;
altitude_D = (float)(err_altitude-err_altitude_old)/0.05; // 20Hz
altitude_I += (float)err_altitude*0.05;
altitude_I = constrain(altitude_I,-120,120);
command_altitude = KP_BARO_ALTITUDE*err_altitude + KD_BARO_ALTITUDE*altitude_D + KI_BARO_ALTITUDE*altitude_I;
command_altitude = Initial_Throttle + constrain(command_altitude,-ALTITUDE_CONTROL_BARO_OUTPUT_MIN,ALTITUDE_CONTROL_BARO_OUTPUT_MAX);
return command_altitude;
}
/* Altitude control... (based on sonar) */
/* CONTROL PARAMETERS FOR SONAR ALTITUDE CONTROL (TEMPORATLY HERE) */
#define KP_SONAR_ALTITUDE 0.8
#define KD_SONAR_ALTITUDE 0.7
#define KI_SONAR_ALTITUDE 0.3
int Altitude_control_Sonar(int Sonar_altitude, int target_sonar_altitude)
{
#define ALTITUDE_CONTROL_SONAR_OUTPUT_MIN 60
#define ALTITUDE_CONTROL_SONAR_OUTPUT_MAX 80
int command_altitude;
err_altitude_old = err_altitude;
err_altitude = target_sonar_altitude - Sonar_altitude;
altitude_D = (float)(err_altitude-err_altitude_old)/0.05;
altitude_I += (float)err_altitude*0.05;
altitude_I = constrain(altitude_I,-1000,1000);
command_altitude = KP_SONAR_ALTITUDE*err_altitude + KD_SONAR_ALTITUDE*altitude_D + KI_SONAR_ALTITUDE*altitude_I;
return (Initial_Throttle + constrain(command_altitude,-ALTITUDE_CONTROL_SONAR_OUTPUT_MIN,ALTITUDE_CONTROL_SONAR_OUTPUT_MAX));
}