ardupilot/ArduCopter/mode_autorotate.cpp

267 lines
9.6 KiB
C++

/* -----------------------------------------------------------------------------------------
This is currently a SITL only function until the project is complete.
To trial this in SITL you will need to use Real Flight 8.
Instructions for how to set this up in SITL can be found here:
https://discuss.ardupilot.org/t/autonomous-autorotation-gsoc-project-blog/42139
-----------------------------------------------------------------------------------------*/
#include "Copter.h"
#include <AC_Autorotation/AC_Autorotation.h>
#include "mode.h"
#include <utility>
#if MODE_AUTOROTATE_ENABLED
#define AUTOROTATE_ENTRY_TIME 2.0f // (s) number of seconds that the entry phase operates for
#define HEAD_SPEED_TARGET_RATIO 1.0f // Normalised target main rotor head speed (unit: -)
#define AUTOROTATION_MIN_MOVING_SPEED 100.0 // (cm/s) minimum speed used for "is moving" check
bool ModeAutorotate::init(bool ignore_checks)
{
#if FRAME_CONFIG != HELI_FRAME
// Only allow trad heli to use autorotation mode
return false;
#endif
// Check that mode is enabled, make sure this is the first check as this is the most
// important thing for users to fix if they are planning to use autorotation mode
if (!g2.arot.is_enable()) {
gcs().send_text(MAV_SEVERITY_WARNING, "Autorot Mode Not Enabled");
return false;
}
// Must be armed to use mode, prevent triggering state machine on the ground
if (!motors->armed() || copter.ap.land_complete || copter.ap.land_complete_maybe) {
gcs().send_text(MAV_SEVERITY_WARNING, "Autorot: Must be Armed and Flying");
return false;
}
// Initialise controllers
// This must be done before RPM value is fetched
g2.arot.init_hs_controller();
g2.arot.init_fwd_spd_controller();
// Retrieve rpm and start rpm sensor health checks
_initial_rpm = g2.arot.get_rpm(true);
// Display message
gcs().send_text(MAV_SEVERITY_INFO, "Autorotation initiated");
// Set all intial flags to on
_flags.entry_initial = true;
_flags.ss_glide_initial = true;
_flags.flare_initial = true;
_flags.touch_down_initial = true;
_flags.landed_initial = true;
_flags.level_initial = true;
_flags.break_initial = true;
_flags.straight_ahead_initial = true;
_msg_flags.bad_rpm = true;
// Setting default starting switches
phase_switch = Autorotation_Phase::ENTRY;
// Set entry timer
_entry_time_start_ms = millis();
// The decay rate to reduce the head speed from the current to the target
_hs_decay = ((_initial_rpm/g2.arot.get_hs_set_point()) - HEAD_SPEED_TARGET_RATIO) / AUTOROTATE_ENTRY_TIME;
return true;
}
void ModeAutorotate::run()
{
// Current time
uint32_t now = millis(); //milliseconds
//----------------------------------------------------------------
// State machine logic
//----------------------------------------------------------------
// Setting default phase switch positions
nav_pos_switch = Navigation_Decision::USER_CONTROL_STABILISED;
// Timer from entry phase to progress to glide phase
if (phase_switch == Autorotation_Phase::ENTRY){
if ((now - _entry_time_start_ms)/1000.0f > AUTOROTATE_ENTRY_TIME) {
// Flight phase can be progressed to steady state glide
phase_switch = Autorotation_Phase::SS_GLIDE;
}
}
// Check if we believe we have landed. We need the landed state to zero all controls and make sure that the copter landing detector will trip
bool speed_check = inertial_nav.get_velocity_z_up_cms() < AUTOROTATION_MIN_MOVING_SPEED &&
inertial_nav.get_speed_xy_cms() < AUTOROTATION_MIN_MOVING_SPEED;
if (motors->get_below_land_min_coll() && AP::ins().is_still() && speed_check) {
phase_switch = Autorotation_Phase::LANDED;
}
// Check if we are bailing out and need to re-set the spool state
if (motors->autorotation_bailout()) {
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
}
//----------------------------------------------------------------
// State machine actions
//----------------------------------------------------------------
switch (phase_switch) {
case Autorotation_Phase::ENTRY:
{
// Entry phase functions to be run only once
if (_flags.entry_initial == true) {
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
gcs().send_text(MAV_SEVERITY_INFO, "Entry Phase");
#endif
// Set following trim low pass cut off frequency
g2.arot.set_col_cutoff_freq(g2.arot.get_col_entry_freq());
// Target head speed is set to rpm at initiation to prevent unwanted changes in attitude
_target_head_speed = _initial_rpm/g2.arot.get_hs_set_point();
// Set desired forward speed target
g2.arot.set_desired_fwd_speed();
// Prevent running the initial entry functions again
_flags.entry_initial = false;
}
// Slowly change the target head speed until the target head speed matches the parameter defined value
if (g2.arot.get_rpm() > HEAD_SPEED_TARGET_RATIO*1.005f || g2.arot.get_rpm() < HEAD_SPEED_TARGET_RATIO*0.995f) {
_target_head_speed -= _hs_decay*G_Dt;
} else {
_target_head_speed = HEAD_SPEED_TARGET_RATIO;
}
// Set target head speed in head speed controller
g2.arot.set_target_head_speed(_target_head_speed);
// Run airspeed/attitude controller
g2.arot.set_dt(G_Dt);
g2.arot.update_forward_speed_controller();
// Retrieve pitch target
_pitch_target = g2.arot.get_pitch();
// Update controllers
_flags.bad_rpm = g2.arot.update_hs_glide_controller(G_Dt); //run head speed/ collective controller
break;
}
case Autorotation_Phase::SS_GLIDE:
{
// Steady state glide functions to be run only once
if (_flags.ss_glide_initial == true) {
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
gcs().send_text(MAV_SEVERITY_INFO, "SS Glide Phase");
#endif
// Set following trim low pass cut off frequency
g2.arot.set_col_cutoff_freq(g2.arot.get_col_glide_freq());
// Set desired forward speed target
g2.arot.set_desired_fwd_speed();
// Set target head speed in head speed controller
_target_head_speed = HEAD_SPEED_TARGET_RATIO; //Ensure target hs is set to glide in case hs has not reached target for glide
g2.arot.set_target_head_speed(_target_head_speed);
// Prevent running the initial glide functions again
_flags.ss_glide_initial = false;
}
// Run airspeed/attitude controller
g2.arot.set_dt(G_Dt);
g2.arot.update_forward_speed_controller();
// Retrieve pitch target
_pitch_target = g2.arot.get_pitch();
// Update head speed/ collective controller
_flags.bad_rpm = g2.arot.update_hs_glide_controller(G_Dt);
// Attitude controller is updated in navigation switch-case statements
break;
}
case Autorotation_Phase::FLARE:
case Autorotation_Phase::TOUCH_DOWN:
{
break;
}
case Autorotation_Phase::LANDED:
{
// Entry phase functions to be run only once
if (_flags.landed_initial == true) {
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
gcs().send_text(MAV_SEVERITY_INFO, "Landed");
#endif
_flags.landed_initial = false;
}
// don't allow controller to continually ask for more pitch to build speed when we are on the ground, decay to zero smoothly
_pitch_target *= 0.95;
break;
}
}
switch (nav_pos_switch) {
case Navigation_Decision::USER_CONTROL_STABILISED:
{
// Operator is in control of roll and yaw. Controls act as if in stabilise flight mode. Pitch
// is controlled by speed-height controller.
float pilot_roll, pilot_pitch;
get_pilot_desired_lean_angles(pilot_roll, pilot_pitch, copter.aparm.angle_max, copter.aparm.angle_max);
// Get pilot's desired yaw rate
float pilot_yaw_rate = get_pilot_desired_yaw_rate();
// Pitch target is calculated in autorotation phase switch above
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(pilot_roll, _pitch_target, pilot_yaw_rate);
break;
}
case Navigation_Decision::STRAIGHT_AHEAD:
case Navigation_Decision::INTO_WIND:
case Navigation_Decision::NEAREST_RALLY:
{
break;
}
}
// Output warning messaged if rpm signal is bad
if (_flags.bad_rpm) {
warning_message(1);
}
} // End function run()
void ModeAutorotate::warning_message(uint8_t message_n)
{
switch (message_n) {
case 1:
{
if (_msg_flags.bad_rpm) {
// Bad rpm sensor health.
gcs().send_text(MAV_SEVERITY_INFO, "Warning: Poor RPM Sensor Health");
gcs().send_text(MAV_SEVERITY_INFO, "Action: Minimum Collective Applied");
_msg_flags.bad_rpm = false;
}
break;
}
}
}
#endif