mirror of https://github.com/ArduPilot/ardupilot
193 lines
6.4 KiB
Plaintext
193 lines
6.4 KiB
Plaintext
|
||
void init_pids()
|
||
{
|
||
// create limits to how much dampening we'll allow
|
||
// this creates symmetry with the P gain value preventing oscillations
|
||
|
||
max_stabilize_dampener = g.pid_stabilize_roll.kP() * 2500; // = 0.6 * 2500 = 1500 or 15°
|
||
max_yaw_dampener = g.pid_yaw.kP() * 6000; // = .5 * 6000 = 3000
|
||
}
|
||
|
||
|
||
void control_nav_mixer()
|
||
{
|
||
// control +- 45° is mixed with the navigation request by the Autopilot
|
||
// output is in degrees = target pitch and roll of copter
|
||
g.rc_1.servo_out = g.rc_1.control_mix(nav_roll);
|
||
g.rc_2.servo_out = g.rc_2.control_mix(nav_pitch);
|
||
}
|
||
|
||
void fbw_nav_mixer()
|
||
{
|
||
// control +- 45° is mixed with the navigation request by the Autopilot
|
||
// output is in degrees = target pitch and roll of copter
|
||
g.rc_1.servo_out = nav_roll;
|
||
g.rc_2.servo_out = nav_pitch;
|
||
}
|
||
|
||
void output_stabilize_roll()
|
||
{
|
||
float error, rate;
|
||
int dampener;
|
||
|
||
error = g.rc_1.servo_out - dcm.roll_sensor;
|
||
|
||
// limit the error we're feeding to the PID
|
||
error = constrain(error, -2500, 2500);
|
||
|
||
// write out angles back to servo out - this will be converted to PWM by RC_Channel
|
||
g.rc_1.servo_out = g.g.pid_stabilize_roll.get_pid(error, delta_ms_fast_loop, 1.0);
|
||
|
||
// We adjust the output by the rate of rotation:
|
||
// Rate control through bias corrected gyro rates
|
||
// omega is the raw gyro reading
|
||
|
||
// Limit dampening to be equal to propotional term for symmetry
|
||
rate = degrees(omega.x) * 100.0; // 6rad = 34377
|
||
dampener = (rate * g.stabilize_dampener); // 34377 * .175 = 6000
|
||
g.rc_1.servo_out -= constrain(dampener, -max_stabilize_dampener, max_stabilize_dampener); // limit to 1500 based on kP
|
||
}
|
||
|
||
void output_stabilize_pitch()
|
||
{
|
||
float error, rate;
|
||
int dampener;
|
||
|
||
error = g.rc_2.servo_out - dcm.pitch_sensor;
|
||
|
||
// limit the error we're feeding to the PID
|
||
error = constrain(error, -2500, 2500);
|
||
|
||
// write out angles back to servo out - this will be converted to PWM by RC_Channel
|
||
g.rc_2.servo_out = g.pid_stabilize_pitch.get_pid(error, delta_ms_fast_loop, 1.0);
|
||
|
||
// We adjust the output by the rate of rotation:
|
||
// Rate control through bias corrected gyro rates
|
||
// omega is the raw gyro reading
|
||
|
||
// Limit dampening to be equal to propotional term for symmetry
|
||
rate = degrees(omega.y) * 100.0; // 6rad = 34377
|
||
dampener = (rate * g.stabilize_dampener); // 34377 * .175 = 6000
|
||
g.rc_2.servo_out -= constrain(dampener, -max_stabilize_dampener, max_stabilize_dampener); // limit to 1500 based on kP
|
||
}
|
||
|
||
void
|
||
clear_yaw_control()
|
||
{
|
||
//Serial.print("Clear ");
|
||
rate_yaw_flag = false; // exit rate_yaw_flag
|
||
nav_yaw = dcm.yaw_sensor; // save our Yaw
|
||
yaw_error = 0;
|
||
}
|
||
|
||
void output_yaw_with_hold(boolean hold)
|
||
{
|
||
if(hold){
|
||
// look to see if we have exited rate control properly - ie stopped turning
|
||
if(rate_yaw_flag){
|
||
// we are still in motion from rate control
|
||
if(fabs(omega.y) < .15){
|
||
clear_yaw_control();
|
||
hold = true; // just to be explicit
|
||
}else{
|
||
// return to rate control until we slow down.
|
||
hold = false;
|
||
}
|
||
}
|
||
|
||
}else{
|
||
// rate control
|
||
|
||
// this indicates we are under rate control, when we enter Yaw Hold and
|
||
// return to 0° per second, we exit rate control and hold the current Yaw
|
||
rate_yaw_flag = true;
|
||
yaw_error = 0;
|
||
}
|
||
|
||
if(hold){
|
||
// try and hold the current nav_yaw setting
|
||
yaw_error = nav_yaw - dcm.yaw_sensor; // +- 60°
|
||
yaw_error = wrap_180(yaw_error);
|
||
|
||
// limit the error we're feeding to the PID
|
||
yaw_error = constrain(yaw_error, -6000, 6000); // limit error to 60 degees
|
||
|
||
// Apply PID and save the new angle back to RC_Channel
|
||
g.rc_4.servo_out = g.pid_yaw.get_pid(yaw_error, delta_ms_fast_loop, 1.0); // .5 * 6000 = 3000
|
||
|
||
// We adjust the output by the rate of rotation
|
||
long rate = degrees(omega.z) * 100.0; // 3rad = 17188 , 6rad = 34377
|
||
int dampener = ((float)rate * g.hold_yaw_dampener); // 18000 * .17 = 3000
|
||
|
||
// Limit dampening to be equal to propotional term for symmetry
|
||
g.rc_4.servo_out -= constrain(dampener, -max_yaw_dampener, max_yaw_dampener); // -3000
|
||
|
||
}else{
|
||
// rate control
|
||
long rate = degrees(omega.z) * 100; // 3rad = 17188 , 6rad = 34377
|
||
rate = constrain(rate, -36000, 36000); // limit to something fun!
|
||
long error = ((long)g.rc_4.control_in * 6) - rate; // control is += 6000 * 6 = 36000
|
||
// -error = CCW, +error = CW
|
||
g.rc_4.servo_out = g.pid_acro_rate_yaw.get_pid(error, delta_ms_fast_loop, 1.0); // .075 * 36000 = 2700
|
||
g.rc_4.servo_out = constrain(g.rc_4.servo_out, -2400, 2400); // limit to 2400
|
||
|
||
}
|
||
}
|
||
|
||
|
||
|
||
void output_rate_roll()
|
||
{
|
||
// rate control
|
||
long rate = degrees(omega.x) * 100; // 3rad = 17188 , 6rad = 34377
|
||
rate = constrain(rate, -36000, 36000); // limit to something fun!
|
||
long error = ((long)g.rc_1.control_in * 8) - rate; // control is += 4500 * 8 = 36000
|
||
|
||
g.rc_1.servo_out = g.pid_acro_rate_roll.get_pid(error, delta_ms_fast_loop, 1.0); // .075 * 36000 = 2700
|
||
g.rc_1.servo_out = constrain(g.rc_1.servo_out, -2400, 2400); // limit to 2400
|
||
}
|
||
|
||
void output_rate_pitch()
|
||
{
|
||
// rate control
|
||
long rate = degrees(omega.y) * 100; // 3rad = 17188 , 6rad = 34377
|
||
rate = constrain(rate, -36000, 36000); // limit to something fun!
|
||
long error = ((long)g.rc_2.control_in * 8) - rate; // control is += 4500 * 8 = 36000
|
||
|
||
g.rc_2.servo_out = g.pid_acro_rate_pitch.get_pid(error, delta_ms_fast_loop, 1.0); // .075 * 36000 = 2700
|
||
g.rc_2.servo_out = constrain(g.rc_2.servo_out, -2400, 2400); // limit to 2400
|
||
}
|
||
|
||
/*
|
||
|
||
g.rc_1.servo_out = g.rc_2.control_in;
|
||
g.rc_2.servo_out = g.rc_2.control_in;
|
||
|
||
// Rate control through bias corrected gyro rates
|
||
// omega is the raw gyro reading plus Omega_I, so it´s bias corrected
|
||
g.rc_1.servo_out -= (omega.x * 5729.57795 * acro_dampener);
|
||
g.rc_2.servo_out -= (omega.y * 5729.57795 * acro_dampener);
|
||
|
||
//Serial.printf("\trated out %d, omega ", g.rc_1.servo_out);
|
||
//Serial.print((Omega[0] * 5729.57795 * stabilize_rate_roll_pitch), 3);
|
||
|
||
// Limit output
|
||
g.rc_1.servo_out = constrain(g.rc_1.servo_out, -MAX_SERVO_OUTPUT, MAX_SERVO_OUTPUT);
|
||
g.rc_2.servo_out = constrain(g.rc_2.servo_out, -MAX_SERVO_OUTPUT, MAX_SERVO_OUTPUT);
|
||
*/
|
||
//}
|
||
|
||
|
||
// Zeros out navigation Integrators if we are changing mode, have passed a waypoint, etc.
|
||
// Keeps outdated data out of our calculations
|
||
void reset_I(void)
|
||
{
|
||
g.pid_nav_lat.reset_I();
|
||
g.pid_nav_lon.reset_I();
|
||
g.pid_baro_throttle.reset_I();
|
||
g.pid_sonar_throttle.reset_I();
|
||
}
|
||
|
||
|
||
|