mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-21 16:18:29 -04:00
193 lines
7.7 KiB
C++
193 lines
7.7 KiB
C++
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
|
|
|
|
#include <APM_RC.h>
|
|
#include "RC_Channel_aux.h"
|
|
|
|
const AP_Param::GroupInfo RC_Channel_aux::var_info[] PROGMEM = {
|
|
AP_NESTEDGROUPINFO(RC_Channel, 0),
|
|
|
|
// @Param: FUNCTION
|
|
// @DisplayName: Servo out function
|
|
// @Description: Setting this to Disabled(0) will disable this output, any other value will enable the corresponding function
|
|
// @Values: 0:Disabled,1:Manual,2:Flap,3:Flap_auto,4:Aileron,5:flaperon,6:mount_pan,7:mount_pitch,8:mount_roll,9:mount_open,10:camera_trigger,11:release
|
|
// @User: Standard
|
|
AP_GROUPINFO("FUNCTION", 1, RC_Channel_aux, function),
|
|
|
|
// @Param: ANGLE_MIN
|
|
// @DisplayName: Minimum object position
|
|
// @Description: Minimum physical angular position of the object that this servo output controls. For example a camera pan angle, an aileron angle, etc
|
|
// @Units: centi-Degrees
|
|
// @Range: -18000 17999
|
|
// @Increment: 1
|
|
// @User: Standard
|
|
AP_GROUPINFO("ANGLE_MIN", 2, RC_Channel_aux, angle_min),
|
|
|
|
// @Param: ANGLE_MAX
|
|
// @DisplayName: Maximum object position
|
|
// @Description: Maximum physical angular position of the object that this servo output controls. For example a camera pan angle, an aileron angle, etc
|
|
// @Units: centi-Degrees
|
|
// @Range: -18000 17999
|
|
// @Increment: 1
|
|
// @User: Standard
|
|
AP_GROUPINFO("ANGLE_MAX", 3, RC_Channel_aux, angle_max),
|
|
AP_GROUPEND
|
|
};
|
|
|
|
/// Global pointer array, indexed by a "RC function enum" and points to the RC channel output assigned to that function/operation
|
|
RC_Channel_aux* g_rc_function[RC_Channel_aux::k_nr_aux_servo_functions];
|
|
|
|
/// saturate to the closest angle limit if outside of [min max] angle interval
|
|
/// input angle is in degrees * 10
|
|
int16_t
|
|
RC_Channel_aux::closest_limit(int16_t angle)
|
|
{
|
|
// Change scaling to 0.1 degrees in order to avoid overflows in the angle arithmetic
|
|
int16_t min = angle_min / 10;
|
|
int16_t max = angle_max / 10;
|
|
|
|
// Make sure the angle lies in the interval [-180 .. 180[ degrees
|
|
while (angle < -1800) angle += 3600;
|
|
while (angle >= 1800) angle -= 3600;
|
|
|
|
// Make sure the angle limits lie in the interval [-180 .. 180[ degrees
|
|
while (min < -1800) min += 3600;
|
|
while (min >= 1800) min -= 3600;
|
|
while (max < -1800) max += 3600;
|
|
while (max >= 1800) max -= 3600;
|
|
// This is done every time because the user might change the min, max values on the fly
|
|
set_range(min, max);
|
|
|
|
// If the angle is outside servo limits, saturate the angle to the closest limit
|
|
// On a circle the closest angular position must be carefully calculated to account for wrap-around
|
|
if ((angle < min) && (angle > max)){
|
|
// angle error if min limit is used
|
|
int16_t err_min = min - angle + (angle<min?0:3600); // add 360 degrees if on the "wrong side"
|
|
// angle error if max limit is used
|
|
int16_t err_max = angle - max + (angle>max?0:3600); // add 360 degrees if on the "wrong side"
|
|
angle = err_min<err_max?min:max;
|
|
}
|
|
|
|
servo_out = angle;
|
|
// convert angle to PWM using a linear transformation (ignores trimming because the servo limits might not be symmetric)
|
|
calc_pwm();
|
|
|
|
return angle;
|
|
}
|
|
|
|
/// Gets the RC and integrates and then compares with the servo out angles to limit control input to servo travel.
|
|
/// That way the user doesn't get lost. Rotationally.
|
|
void
|
|
RC_Channel_aux::rc_input(float *control_angle, int16_t angle)
|
|
{
|
|
if((radio_in < 1480 && angle < angle_max)||(radio_in > 1520 && angle > angle_min)){
|
|
*control_angle += ( 1500 - radio_in ) * .0001; // .0001 is the control speed scaler.
|
|
}
|
|
}
|
|
|
|
/// returns the angle (degrees*100) that the RC_Channel input is receiving
|
|
int32_t
|
|
RC_Channel_aux::angle_input()
|
|
{
|
|
return (get_reverse()?-1:1) * (radio_in - radio_min) * (int32_t)(angle_max - angle_min) / (radio_max - radio_min) + (get_reverse()?angle_max:angle_min);
|
|
}
|
|
|
|
/// returns the angle (radians) that the RC_Channel input is receiving
|
|
float
|
|
RC_Channel_aux::angle_input_rad()
|
|
{
|
|
return radians(angle_input()*0.01);
|
|
}
|
|
|
|
/// enable_out_ch - enable the channel through APM_RC
|
|
void
|
|
RC_Channel_aux::enable_out_ch(unsigned char ch_nr)
|
|
{
|
|
// enable_out this channel if it assigned to a function
|
|
if( function != k_none ) {
|
|
_apm_rc->enable_out(ch_nr);
|
|
}
|
|
}
|
|
|
|
/// map a function to a servo channel and output it
|
|
void
|
|
RC_Channel_aux::output_ch(unsigned char ch_nr)
|
|
{
|
|
// take care or two corner cases
|
|
switch(function)
|
|
{
|
|
case k_none: // disabled
|
|
return;
|
|
break;
|
|
case k_manual: // manual
|
|
radio_out = radio_in;
|
|
break;
|
|
}
|
|
_apm_rc->OutputCh(ch_nr, radio_out);
|
|
}
|
|
|
|
/// Update the g_rc_function array of pointers to rc_x channels
|
|
/// This is to be done before rc_init so that the channels get correctly initialized.
|
|
/// It also should be called periodically because the user might change the configuration and
|
|
/// expects the changes to take effect instantly
|
|
/// Supports up to seven aux servo outputs (typically CH5 ... CH11)
|
|
/// All servos must be configured with a single call to this function
|
|
void update_aux_servo_function( RC_Channel_aux* rc_a,
|
|
RC_Channel_aux* rc_b,
|
|
RC_Channel_aux* rc_c,
|
|
RC_Channel_aux* rc_d,
|
|
RC_Channel_aux* rc_e,
|
|
RC_Channel_aux* rc_f,
|
|
RC_Channel_aux* rc_g)
|
|
{
|
|
RC_Channel_aux::Aux_servo_function_t aux_servo_function[7];
|
|
aux_servo_function[0] = (rc_a == NULL)?RC_Channel_aux::k_none:(RC_Channel_aux::Aux_servo_function_t)rc_a->function.get();
|
|
aux_servo_function[1] = (rc_b == NULL)?RC_Channel_aux::k_none:(RC_Channel_aux::Aux_servo_function_t)rc_b->function.get();
|
|
aux_servo_function[2] = (rc_c == NULL)?RC_Channel_aux::k_none:(RC_Channel_aux::Aux_servo_function_t)rc_c->function.get();
|
|
aux_servo_function[3] = (rc_d == NULL)?RC_Channel_aux::k_none:(RC_Channel_aux::Aux_servo_function_t)rc_d->function.get();
|
|
aux_servo_function[4] = (rc_e == NULL)?RC_Channel_aux::k_none:(RC_Channel_aux::Aux_servo_function_t)rc_e->function.get();
|
|
aux_servo_function[5] = (rc_f == NULL)?RC_Channel_aux::k_none:(RC_Channel_aux::Aux_servo_function_t)rc_f->function.get();
|
|
aux_servo_function[6] = (rc_g == NULL)?RC_Channel_aux::k_none:(RC_Channel_aux::Aux_servo_function_t)rc_g->function.get();
|
|
|
|
for (uint8_t i = 0; i < 7; i++) {
|
|
if (aux_servo_function[i] >= RC_Channel_aux::k_nr_aux_servo_functions) {
|
|
// invalid setting
|
|
aux_servo_function[i] = RC_Channel_aux::k_none;
|
|
}
|
|
}
|
|
|
|
// Assume that no auxiliary function is used
|
|
for (uint8_t i = 0; i < RC_Channel_aux::k_nr_aux_servo_functions ; i++)
|
|
{
|
|
g_rc_function[i] = NULL;
|
|
}
|
|
|
|
// assign the RC channel to each function
|
|
if( rc_a != NULL ) { g_rc_function[aux_servo_function[0]] = rc_a; }
|
|
if( rc_b != NULL ) { g_rc_function[aux_servo_function[1]] = rc_b; }
|
|
if( rc_c != NULL ) { g_rc_function[aux_servo_function[2]] = rc_c; }
|
|
if( rc_d != NULL ) { g_rc_function[aux_servo_function[3]] = rc_d; }
|
|
if( rc_e != NULL ) { g_rc_function[aux_servo_function[3]] = rc_e; }
|
|
if( rc_f != NULL ) { g_rc_function[aux_servo_function[3]] = rc_f; }
|
|
if( rc_g != NULL ) { g_rc_function[aux_servo_function[3]] = rc_g; }
|
|
|
|
//set auxiliary ranges
|
|
G_RC_AUX(k_flap)->set_range(0,100);
|
|
G_RC_AUX(k_flap_auto)->set_range(0,100);
|
|
G_RC_AUX(k_aileron)->set_angle(4500);
|
|
G_RC_AUX(k_flaperon)->set_range(0,100);
|
|
G_RC_AUX(k_mount_yaw)->set_range(
|
|
g_rc_function[RC_Channel_aux::k_mount_yaw]->angle_min / 10,
|
|
g_rc_function[RC_Channel_aux::k_mount_yaw]->angle_max / 10);
|
|
G_RC_AUX(k_mount_pitch)->set_range(
|
|
g_rc_function[RC_Channel_aux::k_mount_pitch]->angle_min / 10,
|
|
g_rc_function[RC_Channel_aux::k_mount_pitch]->angle_max / 10);
|
|
G_RC_AUX(k_mount_roll)->set_range(
|
|
g_rc_function[RC_Channel_aux::k_mount_roll]->angle_min / 10,
|
|
g_rc_function[RC_Channel_aux::k_mount_roll]->angle_max / 10);
|
|
G_RC_AUX(k_mount_open)->set_range(0,100);
|
|
G_RC_AUX(k_cam_trigger)->set_range(
|
|
g_rc_function[RC_Channel_aux::k_cam_trigger]->angle_min / 10,
|
|
g_rc_function[RC_Channel_aux::k_cam_trigger]->angle_max / 10);
|
|
G_RC_AUX(k_egg_drop)->set_range(0,100);
|
|
}
|