mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-05 23:48:31 -04:00
210 lines
5.1 KiB
Plaintext
210 lines
5.1 KiB
Plaintext
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#if FRAME_CONFIG == QUAD_FRAME
|
|
|
|
static void init_motors_out()
|
|
{
|
|
#if INSTANT_PWM == 0
|
|
APM_RC.SetFastOutputChannels(_BV(MOT_1) | _BV(MOT_2) | _BV(MOT_3) | _BV(MOT_4),
|
|
g.rc_speed);
|
|
#endif
|
|
}
|
|
|
|
static void motors_output_enable()
|
|
{
|
|
APM_RC.enable_out(MOT_1);
|
|
APM_RC.enable_out(MOT_2);
|
|
APM_RC.enable_out(MOT_3);
|
|
APM_RC.enable_out(MOT_4);
|
|
}
|
|
|
|
static void output_motors_armed()
|
|
{
|
|
int roll_out, pitch_out;
|
|
int out_min = g.rc_3.radio_min;
|
|
int out_max = g.rc_3.radio_max;
|
|
|
|
// Throttle is 0 to 1000 only
|
|
g.rc_3.servo_out = constrain(g.rc_3.servo_out, 0, MAXIMUM_THROTTLE);
|
|
|
|
if(g.rc_3.servo_out > 0)
|
|
out_min = g.rc_3.radio_min + MINIMUM_THROTTLE;
|
|
|
|
g.rc_1.calc_pwm();
|
|
g.rc_2.calc_pwm();
|
|
g.rc_3.calc_pwm();
|
|
g.rc_4.calc_pwm();
|
|
|
|
|
|
|
|
if(g.frame_orientation == X_FRAME){
|
|
roll_out = (float)g.rc_1.pwm_out * 0.707;
|
|
pitch_out = (float)g.rc_2.pwm_out * 0.707;
|
|
|
|
// left
|
|
motor_out[MOT_3] = g.rc_3.radio_out + roll_out + pitch_out; // FRONT
|
|
motor_out[MOT_2] = g.rc_3.radio_out + roll_out - pitch_out; // BACK
|
|
|
|
// right
|
|
motor_out[MOT_1] = g.rc_3.radio_out - roll_out + pitch_out; // FRONT
|
|
motor_out[MOT_4] = g.rc_3.radio_out - roll_out - pitch_out; // BACK
|
|
|
|
}else{
|
|
|
|
roll_out = g.rc_1.pwm_out;
|
|
pitch_out = g.rc_2.pwm_out;
|
|
|
|
// right motor
|
|
motor_out[MOT_1] = g.rc_3.radio_out - roll_out;
|
|
// left motor
|
|
motor_out[MOT_2] = g.rc_3.radio_out + roll_out;
|
|
// front motor
|
|
motor_out[MOT_3] = g.rc_3.radio_out + pitch_out;
|
|
// back motor
|
|
motor_out[MOT_4] = g.rc_3.radio_out - pitch_out;
|
|
}
|
|
|
|
// Yaw input
|
|
motor_out[MOT_1] += g.rc_4.pwm_out; // CCW
|
|
motor_out[MOT_2] += g.rc_4.pwm_out; // CCW
|
|
motor_out[MOT_3] -= g.rc_4.pwm_out; // CW
|
|
motor_out[MOT_4] -= g.rc_4.pwm_out; // CW
|
|
|
|
/* We need to clip motor output at out_max. When cipping a motors
|
|
* output we also need to compensate for the instability by
|
|
* lowering the opposite motor by the same proportion. This
|
|
* ensures that we retain control when one or more of the motors
|
|
* is at its maximum output
|
|
*/
|
|
for (int i = MOT_1; i <= MOT_4; i++){
|
|
if(motor_out[i] > out_max){
|
|
// note that i^1 is the opposite motor
|
|
motor_out[i ^ 1] -= motor_out[i] - out_max;
|
|
motor_out[i] = out_max;
|
|
}
|
|
}
|
|
|
|
// limit output so motors don't stop
|
|
motor_out[MOT_1] = max(motor_out[MOT_1], out_min);
|
|
motor_out[MOT_2] = max(motor_out[MOT_2], out_min);
|
|
motor_out[MOT_3] = max(motor_out[MOT_3], out_min);
|
|
motor_out[MOT_4] = max(motor_out[MOT_4], out_min);
|
|
|
|
#if CUT_MOTORS == ENABLED
|
|
// if we are not sending a throttle output, we cut the motors
|
|
if(g.rc_3.servo_out == 0){
|
|
motor_out[MOT_1] = g.rc_3.radio_min;
|
|
motor_out[MOT_2] = g.rc_3.radio_min;
|
|
motor_out[MOT_3] = g.rc_3.radio_min;
|
|
motor_out[MOT_4] = g.rc_3.radio_min;
|
|
}
|
|
#endif
|
|
|
|
APM_RC.OutputCh(MOT_1, motor_out[MOT_1]);
|
|
APM_RC.OutputCh(MOT_2, motor_out[MOT_2]);
|
|
APM_RC.OutputCh(MOT_3, motor_out[MOT_3]);
|
|
APM_RC.OutputCh(MOT_4, motor_out[MOT_4]);
|
|
|
|
|
|
#if INSTANT_PWM == 1
|
|
// InstantPWM
|
|
APM_RC.Force_Out0_Out1();
|
|
APM_RC.Force_Out2_Out3();
|
|
#endif
|
|
|
|
//debug_motors();
|
|
}
|
|
|
|
static void output_motors_disarmed()
|
|
{
|
|
if(g.rc_3.control_in > 0){
|
|
// we have pushed up the throttle
|
|
// remove safety
|
|
motor_auto_armed = true;
|
|
}
|
|
|
|
// fill the motor_out[] array for HIL use
|
|
for (unsigned char i = 0; i < 8; i++){
|
|
motor_out[i] = g.rc_3.radio_min;
|
|
}
|
|
|
|
// Send commands to motors
|
|
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min);
|
|
APM_RC.OutputCh(MOT_2, g.rc_3.radio_min);
|
|
APM_RC.OutputCh(MOT_3, g.rc_3.radio_min);
|
|
APM_RC.OutputCh(MOT_4, g.rc_3.radio_min);
|
|
}
|
|
|
|
/*
|
|
//static void debug_motors()
|
|
{
|
|
Serial.printf("1:%d\t2:%d\t3:%d\t4:%d\n",
|
|
motor_out[MOT_1],
|
|
motor_out[MOT_2],
|
|
motor_out[MOT_3],
|
|
motor_out[MOT_4]);
|
|
}
|
|
//*/
|
|
|
|
static void output_motor_test()
|
|
{
|
|
motor_out[MOT_1] = g.rc_3.radio_min;
|
|
motor_out[MOT_2] = g.rc_3.radio_min;
|
|
motor_out[MOT_3] = g.rc_3.radio_min;
|
|
motor_out[MOT_4] = g.rc_3.radio_min;
|
|
|
|
|
|
if(g.frame_orientation == X_FRAME){
|
|
|
|
APM_RC.OutputCh(MOT_3, g.rc_2.radio_min);
|
|
delay(4000);
|
|
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min + 100);
|
|
delay(300);
|
|
|
|
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min);
|
|
delay(2000);
|
|
APM_RC.OutputCh(MOT_4, g.rc_1.radio_min + 100);
|
|
delay(300);
|
|
|
|
APM_RC.OutputCh(MOT_4, g.rc_1.radio_min);
|
|
delay(2000);
|
|
APM_RC.OutputCh(MOT_2, g.rc_4.radio_min + 100);
|
|
delay(300);
|
|
|
|
APM_RC.OutputCh(MOT_2, g.rc_4.radio_min);
|
|
delay(2000);
|
|
APM_RC.OutputCh(MOT_3, g.rc_2.radio_min + 100);
|
|
delay(300);
|
|
|
|
}else{
|
|
|
|
APM_RC.OutputCh(MOT_3, g.rc_2.radio_min);
|
|
delay(4000);
|
|
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min + 100);
|
|
delay(300);
|
|
|
|
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min);
|
|
delay(2000);
|
|
APM_RC.OutputCh(MOT_2, g.rc_1.radio_min + 100);
|
|
delay(300);
|
|
|
|
APM_RC.OutputCh(MOT_2, g.rc_1.radio_min);
|
|
delay(2000);
|
|
APM_RC.OutputCh(MOT_4, g.rc_4.radio_min + 100);
|
|
delay(300);
|
|
|
|
APM_RC.OutputCh(MOT_4, g.rc_4.radio_min);
|
|
delay(2000);
|
|
APM_RC.OutputCh(MOT_3, g.rc_2.radio_min + 100);
|
|
delay(300);
|
|
|
|
}
|
|
|
|
APM_RC.OutputCh(MOT_1, motor_out[MOT_1]);
|
|
APM_RC.OutputCh(MOT_2, motor_out[MOT_2]);
|
|
APM_RC.OutputCh(MOT_3, motor_out[MOT_3]);
|
|
APM_RC.OutputCh(MOT_4, motor_out[MOT_4]);
|
|
}
|
|
|
|
#endif
|