ardupilot/libraries/AP_Proximity/AP_Proximity_Backend.cpp

225 lines
7.8 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_Proximity_Backend.h"
#if HAL_PROXIMITY_ENABLED
#include <AP_Common/AP_Common.h>
#include <AP_Common/Location.h>
#include <AP_AHRS/AP_AHRS.h>
#include <AC_Avoidance/AP_OADatabase.h>
#include <AP_HAL/AP_HAL.h>
extern const AP_HAL::HAL& hal;
/*
base class constructor.
This incorporates initialisation as well.
*/
AP_Proximity_Backend::AP_Proximity_Backend(AP_Proximity &_frontend, AP_Proximity::Proximity_State &_state) :
frontend(_frontend),
state(_state)
{
}
static_assert(PROXIMITY_MAX_DIRECTION <= 8,
"get_horizontal_distances assumes 8-bits is enough for validity bitmask");
// get distances in PROXIMITY_MAX_DIRECTION directions horizontally. used for sending distances to ground station
bool AP_Proximity_Backend::get_horizontal_distances(AP_Proximity::Proximity_Distance_Array &prx_dist_array) const
{
AP_Proximity::Proximity_Distance_Array prx_filt_dist_array; // unused
return boundary.get_layer_distances(PROXIMITY_MIDDLE_LAYER, distance_max(), prx_dist_array, prx_filt_dist_array);
}
// get distances in PROXIMITY_MAX_DIRECTION directions at a layer. used for logging
bool AP_Proximity_Backend::get_active_layer_distances(uint8_t layer, AP_Proximity::Proximity_Distance_Array &prx_dist_array, AP_Proximity::Proximity_Distance_Array &prx_filt_dist_array) const
{
return boundary.get_layer_distances(layer, distance_max(), prx_dist_array, prx_filt_dist_array);
}
// set status and update valid count
void AP_Proximity_Backend::set_status(AP_Proximity::Status status)
{
state.status = status;
}
// timeout faces that have not received data recently and update filter frequencies
void AP_Proximity_Backend::boundary_3D_checks()
{
// set the cutoff freq for low pass filter
boundary.set_filter_freq(frontend.get_filter_freq());
// check if any face has valid distance when it should not
const uint32_t now_ms = AP_HAL::millis();
// run this check every PROXIMITY_BOUNDARY_3D_TIMEOUT_MS
if ((now_ms - _last_timeout_check_ms) > PROXIMITY_BOUNDARY_3D_TIMEOUT_MS) {
_last_timeout_check_ms = now_ms;
boundary.check_face_timeout();
}
}
// correct an angle (in degrees) based on the orientation and yaw correction parameters
float AP_Proximity_Backend::correct_angle_for_orientation(float angle_degrees) const
{
const float angle_sign = (frontend.get_orientation(state.instance) == 1) ? -1.0f : 1.0f;
return wrap_360(angle_degrees * angle_sign + frontend.get_yaw_correction(state.instance));
}
// check if a reading should be ignored because it falls into an ignore area or if obstacle is near land
bool AP_Proximity_Backend::ignore_reading(uint16_t angle_deg, float distance_m) const
{
// check angle vs each ignore area
for (uint8_t i=0; i < PROXIMITY_MAX_IGNORE; i++) {
if (frontend._ignore_width_deg[i] != 0) {
if (abs(angle_deg - frontend._ignore_angle_deg[i]) <= (frontend._ignore_width_deg[i]/2)) {
return true;
}
}
}
// check if obstacle is near land
return check_obstacle_near_ground(angle_deg, distance_m);
}
// store rangefinder values
void AP_Proximity_Backend::set_rangefinder_alt(bool use, bool healthy, float alt_cm)
{
_last_downward_update_ms = AP_HAL::millis();
_rangefinder_use = use;
_rangefinder_healthy = healthy;
_rangefinder_alt = alt_cm * 0.01f;
}
// get alt from rangefinder in meters
bool AP_Proximity_Backend::get_rangefinder_alt(float &alt_m) const
{
if (!_rangefinder_use || !_rangefinder_healthy) {
// range finder is not healthy
return false;
}
const uint32_t dt = AP_HAL::millis() - _last_downward_update_ms;
if (dt > PROXIMITY_ALT_DETECT_TIMEOUT_MS) {
return false;
}
// readings are healthy
alt_m = _rangefinder_alt;
return true;
}
// Check if Obstacle defined by body-frame yaw and pitch is near ground
bool AP_Proximity_Backend::check_obstacle_near_ground(float yaw, float pitch, float distance) const
{
if (!frontend._ign_gnd_enable) {
return false;
}
if (!hal.util->get_soft_armed()) {
// don't run this feature while vehicle is disarmed, otherwise proximity data will not show up on GCS
return false;
}
if ((pitch > 90.0f) || (pitch < -90.0f)) {
// sanity check on pitch
return false;
}
// Assume object is yaw and pitch bearing and distance meters away from the vehicle
Vector3f object_3D;
object_3D.offset_bearing(wrap_180(yaw), (pitch * -1.0f), distance);
const Matrix3f body_to_ned = AP::ahrs().get_rotation_body_to_ned();
const Vector3f rotated_object_3D = body_to_ned * object_3D;
return check_obstacle_near_ground(rotated_object_3D);
}
// Check if Obstacle defined by Vector3f is near ground. The vector is assumed to be body frame FRD
bool AP_Proximity_Backend::check_obstacle_near_ground(const Vector3f &obstacle) const
{
if (!frontend._ign_gnd_enable) {
return false;
}
if (!hal.util->get_soft_armed()) {
// don't run this feature while vehicle is disarmed, otherwise proximity data will not show up on GCS
return false;
}
float alt = FLT_MAX;
if (!get_rangefinder_alt(alt)) {
return false;
}
if (obstacle.z > -0.5f) {
// obstacle is at the most 0.5 meters above vehicle
if ((alt - PROXIMITY_GND_DETECT_THRESHOLD) < obstacle.z) {
// obstacle is near or below ground
return true;
}
}
return false;
}
// returns true if database is ready to be pushed to and all cached data is ready
bool AP_Proximity_Backend::database_prepare_for_push(Vector3f &current_pos, Matrix3f &body_to_ned)
{
AP_OADatabase *oaDb = AP::oadatabase();
if (oaDb == nullptr || !oaDb->healthy()) {
return false;
}
if (!AP::ahrs().get_relative_position_NED_origin(current_pos)) {
return false;
}
body_to_ned = AP::ahrs().get_rotation_body_to_ned();
return true;
}
// update Object Avoidance database with Earth-frame point
void AP_Proximity_Backend::database_push(float angle, float distance)
{
Vector3f current_pos;
Matrix3f body_to_ned;
if (database_prepare_for_push(current_pos, body_to_ned)) {
database_push(angle, distance, AP_HAL::millis(), current_pos, body_to_ned);
}
}
// update Object Avoidance database with Earth-frame point
// pitch can be optionally provided if needed
void AP_Proximity_Backend::database_push(float angle, float pitch, float distance, uint32_t timestamp_ms, const Vector3f &current_pos, const Matrix3f &body_to_ned)
{
AP_OADatabase *oaDb = AP::oadatabase();
if (oaDb == nullptr || !oaDb->healthy()) {
return;
}
if ((pitch > 90.0f) || (pitch < -90.0f)) {
// sanity check on pitch
return;
}
//Assume object is angle and pitch bearing and distance meters away from the vehicle
Vector3f object_3D;
object_3D.offset_bearing(wrap_180(angle), (pitch * -1.0f), distance);
const Vector3f rotated_object_3D = body_to_ned * object_3D;
//Calculate the position vector from origin
Vector3f temp_pos = current_pos + rotated_object_3D;
//Convert the vector to a NEU frame from NED
temp_pos.z = temp_pos.z * -1.0f;
oaDb->queue_push(temp_pos, timestamp_ms, distance);
}
#endif // HAL_PROXIMITY_ENABLED