mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-07 00:18:29 -04:00
118 lines
3.8 KiB
C++
118 lines
3.8 KiB
C++
#include "PosVelEKF.h"
|
|
#include <math.h>
|
|
#include <string.h>
|
|
|
|
// Initialize the covariance and state matrix
|
|
// This is called when the landing target is located for the first time or it was lost, then relocated
|
|
void PosVelEKF::init(float pos, float posVar, float vel, float velVar)
|
|
{
|
|
_state[0] = pos;
|
|
_state[1] = vel;
|
|
_cov[0] = posVar;
|
|
_cov[1] = 0.0f;
|
|
_cov[2] = velVar;
|
|
}
|
|
|
|
// This functions runs the Prediction Step of the EKF
|
|
// This is called at 400 hz
|
|
void PosVelEKF::predict(float dt, float dVel, float dVelNoise)
|
|
{
|
|
// Newly predicted state and covariance matrix at next time step
|
|
float newState[2];
|
|
float newCov[3];
|
|
|
|
// We assume the following state model for this problem
|
|
newState[0] = dt*_state[1] + _state[0];
|
|
newState[1] = dVel + _state[1];
|
|
|
|
/*
|
|
The above state model is broken down into the needed EKF form:
|
|
newState = A*OldState + B*u
|
|
|
|
Taking jacobian with respect to state, we derive the A (or F) matrix.
|
|
|
|
A = F = |1 dt|
|
|
|0 1|
|
|
|
|
B = |0|
|
|
|1|
|
|
|
|
u = dVel
|
|
|
|
Covariance Matrix is ALWAYS symmetric, therefore the following matrix is assumed:
|
|
P = Covariance Matrix = |cov[0] cov[1]|
|
|
|cov[1] cov[2]|
|
|
|
|
newCov = F * P * F.transpose + Q
|
|
Q = |0 0 |
|
|
|0 dVelNoise^2|
|
|
|
|
Post algebraic operations, and converting it to a upper triangular matrix (because of symmetry)
|
|
The Updated covariance matrix is of the following form:
|
|
*/
|
|
|
|
newCov[0] = dt*_cov[1] + dt*(dt*_cov[2] + _cov[1]) + _cov[0];
|
|
newCov[1] = dt*_cov[2] + _cov[1];
|
|
newCov[2] = ((dVelNoise)*(dVelNoise)) + _cov[2];
|
|
|
|
// store the predicted matrices
|
|
memcpy(_state,newState,sizeof(_state));
|
|
memcpy(_cov,newCov,sizeof(_cov));
|
|
}
|
|
|
|
// fuse the new sensor measurement into the EKF calculations
|
|
// This is called whenever we have a new measurement available
|
|
void PosVelEKF::fusePos(float pos, float posVar)
|
|
{
|
|
float newState[2];
|
|
float newCov[3];
|
|
|
|
// innovation_residual = new_sensor_readings - OldState
|
|
const float innovation_residual = pos - _state[0];
|
|
|
|
/*
|
|
Measurement matrix H = [1 0] since we are directly measuring pos only
|
|
Innovation Covariance = S = H * P * H.Transpose + R
|
|
Since this is a 1-D measurement, R = posVar, which is expected variance in postion sensor reading
|
|
Post multiplication this becomes:
|
|
*/
|
|
const float innovation_covariance = _cov[0] + posVar;
|
|
|
|
/*
|
|
Next step involves calculating the kalman gain "K"
|
|
K = P * H.transpose * S.inverse
|
|
After solving, this comes out to be:
|
|
K = | cov[0]/innovation_covariance |
|
|
| cov[1]/innovation_covariance |
|
|
|
|
Updated state estimate = OldState + K * innovation residual
|
|
This is calculated and simplified below
|
|
*/
|
|
|
|
newState[0] = _cov[0]*(innovation_residual)/(innovation_covariance) + _state[0];
|
|
newState[1] = _cov[1]*(innovation_residual)/(innovation_covariance) + _state[1];
|
|
|
|
/*
|
|
Updated covariance matrix = (I-K*H)*P
|
|
This is calculated and simplified below. Again, this is converted to upper triangular matrix (because of symmetry)
|
|
*/
|
|
|
|
newCov[0] = _cov[0] * posVar / innovation_covariance;
|
|
newCov[1] = _cov[1] * posVar / innovation_covariance;
|
|
newCov[2] = -_cov[1] * _cov[1] / innovation_covariance + _cov[2];
|
|
|
|
memcpy(_state,newState,sizeof(_state));
|
|
memcpy(_cov,newCov,sizeof(_cov));
|
|
}
|
|
|
|
// Returns normalized innovation squared
|
|
float PosVelEKF::getPosNIS(float pos, float posVar)
|
|
{
|
|
// NIS = innovation_residual.Transpose * Innovation_Covariance.Inverse * innovation_residual
|
|
const float innovation_residual = pos - _state[0];
|
|
const float innovation_covariance = _cov[0] + posVar;
|
|
|
|
const float NIS = (innovation_residual*innovation_residual)/(innovation_covariance);
|
|
return NIS;
|
|
}
|