mirror of https://github.com/ArduPilot/ardupilot
396 lines
12 KiB
C++
396 lines
12 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/*
|
|
very simple plane simulator class. Not aerodynamically accurate,
|
|
just enough to be able to debug control logic for new frame types
|
|
*/
|
|
|
|
#include "SIM_Plane.h"
|
|
|
|
#include <stdio.h>
|
|
|
|
using namespace SITL;
|
|
|
|
Plane::Plane(const char *frame_str) :
|
|
Aircraft(frame_str)
|
|
{
|
|
mass = 2.0f;
|
|
|
|
/*
|
|
scaling from motor power to Newtons. Allows the plane to hold
|
|
vertically against gravity when the motor is at hover_throttle
|
|
*/
|
|
thrust_scale = (mass * GRAVITY_MSS) / hover_throttle;
|
|
frame_height = 0.1f;
|
|
num_motors = 1;
|
|
|
|
ground_behavior = GROUND_BEHAVIOR_FWD_ONLY;
|
|
lock_step_scheduled = true;
|
|
|
|
if (strstr(frame_str, "-heavy")) {
|
|
mass = 8;
|
|
}
|
|
if (strstr(frame_str, "-jet")) {
|
|
// a 22kg "jet", level top speed is 102m/s
|
|
mass = 22;
|
|
thrust_scale = (mass * GRAVITY_MSS) / hover_throttle;
|
|
}
|
|
if (strstr(frame_str, "-revthrust")) {
|
|
reverse_thrust = true;
|
|
}
|
|
if (strstr(frame_str, "-elevon")) {
|
|
elevons = true;
|
|
} else if (strstr(frame_str, "-vtail")) {
|
|
vtail = true;
|
|
} else if (strstr(frame_str, "-dspoilers")) {
|
|
dspoilers = true;
|
|
}
|
|
if (strstr(frame_str, "-elevrev")) {
|
|
reverse_elevator_rudder = true;
|
|
}
|
|
if (strstr(frame_str, "-catapult")) {
|
|
have_launcher = true;
|
|
launch_accel = 15;
|
|
launch_time = 2;
|
|
}
|
|
if (strstr(frame_str, "-bungee")) {
|
|
have_launcher = true;
|
|
launch_accel = 7;
|
|
launch_time = 4;
|
|
}
|
|
if (strstr(frame_str, "-throw")) {
|
|
have_launcher = true;
|
|
launch_accel = 25;
|
|
launch_time = 0.4;
|
|
}
|
|
if (strstr(frame_str, "-tailsitter")) {
|
|
tailsitter = true;
|
|
ground_behavior = GROUND_BEHAVIOR_TAILSITTER;
|
|
thrust_scale *= 1.5;
|
|
}
|
|
|
|
if (strstr(frame_str, "-ice")) {
|
|
ice_engine = true;
|
|
}
|
|
|
|
if (strstr(frame_str, "-soaring")) {
|
|
mass = 2.0;
|
|
coefficient.c_drag_p = 0.05;
|
|
}
|
|
}
|
|
|
|
/*
|
|
the following functions are from last_letter
|
|
https://github.com/Georacer/last_letter/blob/master/last_letter/src/aerodynamicsLib.cpp
|
|
many thanks to Georacer!
|
|
*/
|
|
float Plane::liftCoeff(float alpha) const
|
|
{
|
|
const float alpha0 = coefficient.alpha_stall;
|
|
const float M = coefficient.mcoeff;
|
|
const float c_lift_0 = coefficient.c_lift_0;
|
|
const float c_lift_a0 = coefficient.c_lift_a;
|
|
|
|
// clamp the value of alpha to avoid exp(90) in calculation of sigmoid
|
|
const float max_alpha_delta = 0.8f;
|
|
if (alpha-alpha0 > max_alpha_delta) {
|
|
alpha = alpha0 + max_alpha_delta;
|
|
} else if (alpha0-alpha > max_alpha_delta) {
|
|
alpha = alpha0 - max_alpha_delta;
|
|
}
|
|
double sigmoid = ( 1+exp(-M*(alpha-alpha0))+exp(M*(alpha+alpha0)) ) / (1+exp(-M*(alpha-alpha0))) / (1+exp(M*(alpha+alpha0)));
|
|
double linear = (1.0-sigmoid) * (c_lift_0 + c_lift_a0*alpha); //Lift at small AoA
|
|
double flatPlate = sigmoid*(2*copysign(1,alpha)*pow(sin(alpha),2)*cos(alpha)); //Lift beyond stall
|
|
|
|
float result = linear+flatPlate;
|
|
return result;
|
|
}
|
|
|
|
float Plane::dragCoeff(float alpha) const
|
|
{
|
|
const float b = coefficient.b;
|
|
const float s = coefficient.s;
|
|
const float c_drag_p = coefficient.c_drag_p;
|
|
const float c_lift_0 = coefficient.c_lift_0;
|
|
const float c_lift_a0 = coefficient.c_lift_a;
|
|
const float oswald = coefficient.oswald;
|
|
|
|
double AR = pow(b,2)/s;
|
|
double c_drag_a = c_drag_p + pow(c_lift_0+c_lift_a0*alpha,2)/(M_PI*oswald*AR);
|
|
|
|
return c_drag_a;
|
|
}
|
|
|
|
// Torque calculation function
|
|
Vector3f Plane::getTorque(float inputAileron, float inputElevator, float inputRudder, float inputThrust, const Vector3f &force) const
|
|
{
|
|
float alpha = angle_of_attack;
|
|
|
|
//calculate aerodynamic torque
|
|
float effective_airspeed = airspeed;
|
|
|
|
if (tailsitter) {
|
|
/*
|
|
tailsitters get airspeed from prop-wash
|
|
*/
|
|
effective_airspeed += inputThrust * 20;
|
|
|
|
// reduce effective angle of attack as thrust increases
|
|
alpha *= constrain_float(1 - inputThrust, 0, 1);
|
|
}
|
|
|
|
const float s = coefficient.s;
|
|
const float c = coefficient.c;
|
|
const float b = coefficient.b;
|
|
const float c_l_0 = coefficient.c_l_0;
|
|
const float c_l_b = coefficient.c_l_b;
|
|
const float c_l_p = coefficient.c_l_p;
|
|
const float c_l_r = coefficient.c_l_r;
|
|
const float c_l_deltaa = coefficient.c_l_deltaa;
|
|
const float c_l_deltar = coefficient.c_l_deltar;
|
|
const float c_m_0 = coefficient.c_m_0;
|
|
const float c_m_a = coefficient.c_m_a;
|
|
const float c_m_q = coefficient.c_m_q;
|
|
const float c_m_deltae = coefficient.c_m_deltae;
|
|
const float c_n_0 = coefficient.c_n_0;
|
|
const float c_n_b = coefficient.c_n_b;
|
|
const float c_n_p = coefficient.c_n_p;
|
|
const float c_n_r = coefficient.c_n_r;
|
|
const float c_n_deltaa = coefficient.c_n_deltaa;
|
|
const float c_n_deltar = coefficient.c_n_deltar;
|
|
const Vector3f &CGOffset = coefficient.CGOffset;
|
|
|
|
float rho = air_density;
|
|
|
|
//read angular rates
|
|
double p = gyro.x;
|
|
double q = gyro.y;
|
|
double r = gyro.z;
|
|
|
|
double qbar = 1.0/2.0*rho*pow(effective_airspeed,2)*s; //Calculate dynamic pressure
|
|
double la, na, ma;
|
|
if (is_zero(effective_airspeed))
|
|
{
|
|
la = 0;
|
|
ma = 0;
|
|
na = 0;
|
|
}
|
|
else
|
|
{
|
|
la = qbar*b*(c_l_0 + c_l_b*beta + c_l_p*b*p/(2*effective_airspeed) + c_l_r*b*r/(2*effective_airspeed) + c_l_deltaa*inputAileron + c_l_deltar*inputRudder);
|
|
ma = qbar*c*(c_m_0 + c_m_a*alpha + c_m_q*c*q/(2*effective_airspeed) + c_m_deltae*inputElevator);
|
|
na = qbar*b*(c_n_0 + c_n_b*beta + c_n_p*b*p/(2*effective_airspeed) + c_n_r*b*r/(2*effective_airspeed) + c_n_deltaa*inputAileron + c_n_deltar*inputRudder);
|
|
}
|
|
|
|
|
|
// Add torque to to force misalignment with CG
|
|
// r x F, where r is the distance from CoG to CoL
|
|
la += CGOffset.y * force.z - CGOffset.z * force.y;
|
|
ma += -CGOffset.x * force.z + CGOffset.z * force.x;
|
|
na += -CGOffset.y * force.x + CGOffset.x * force.y;
|
|
|
|
return Vector3f(la, ma, na);
|
|
}
|
|
|
|
// Force calculation function from last_letter
|
|
Vector3f Plane::getForce(float inputAileron, float inputElevator, float inputRudder) const
|
|
{
|
|
const float alpha = angle_of_attack;
|
|
const float c_drag_q = coefficient.c_drag_q;
|
|
const float c_lift_q = coefficient.c_lift_q;
|
|
const float s = coefficient.s;
|
|
const float c = coefficient.c;
|
|
const float b = coefficient.b;
|
|
const float c_drag_deltae = coefficient.c_drag_deltae;
|
|
const float c_lift_deltae = coefficient.c_lift_deltae;
|
|
const float c_y_0 = coefficient.c_y_0;
|
|
const float c_y_b = coefficient.c_y_b;
|
|
const float c_y_p = coefficient.c_y_p;
|
|
const float c_y_r = coefficient.c_y_r;
|
|
const float c_y_deltaa = coefficient.c_y_deltaa;
|
|
const float c_y_deltar = coefficient.c_y_deltar;
|
|
|
|
float rho = air_density;
|
|
|
|
//request lift and drag alpha-coefficients from the corresponding functions
|
|
double c_lift_a = liftCoeff(alpha);
|
|
double c_drag_a = dragCoeff(alpha);
|
|
|
|
//convert coefficients to the body frame
|
|
double c_x_a = -c_drag_a*cos(alpha)+c_lift_a*sin(alpha);
|
|
double c_x_q = -c_drag_q*cos(alpha)+c_lift_q*sin(alpha);
|
|
double c_z_a = -c_drag_a*sin(alpha)-c_lift_a*cos(alpha);
|
|
double c_z_q = -c_drag_q*sin(alpha)-c_lift_q*cos(alpha);
|
|
|
|
//read angular rates
|
|
double p = gyro.x;
|
|
double q = gyro.y;
|
|
double r = gyro.z;
|
|
|
|
//calculate aerodynamic force
|
|
double qbar = 1.0/2.0*rho*pow(airspeed,2)*s; //Calculate dynamic pressure
|
|
double ax, ay, az;
|
|
if (is_zero(airspeed))
|
|
{
|
|
ax = 0;
|
|
ay = 0;
|
|
az = 0;
|
|
}
|
|
else
|
|
{
|
|
ax = qbar*(c_x_a + c_x_q*c*q/(2*airspeed) - c_drag_deltae*cos(alpha)*fabs(inputElevator) + c_lift_deltae*sin(alpha)*inputElevator);
|
|
// split c_x_deltae to include "abs" term
|
|
ay = qbar*(c_y_0 + c_y_b*beta + c_y_p*b*p/(2*airspeed) + c_y_r*b*r/(2*airspeed) + c_y_deltaa*inputAileron + c_y_deltar*inputRudder);
|
|
az = qbar*(c_z_a + c_z_q*c*q/(2*airspeed) - c_drag_deltae*sin(alpha)*fabs(inputElevator) - c_lift_deltae*cos(alpha)*inputElevator);
|
|
// split c_z_deltae to include "abs" term
|
|
}
|
|
return Vector3f(ax, ay, az);
|
|
}
|
|
|
|
void Plane::calculate_forces(const struct sitl_input &input, Vector3f &rot_accel)
|
|
{
|
|
float aileron = filtered_servo_angle(input, 0);
|
|
float elevator = filtered_servo_angle(input, 1);
|
|
float rudder = filtered_servo_angle(input, 3);
|
|
bool launch_triggered = input.servos[6] > 1700;
|
|
float throttle;
|
|
if (reverse_elevator_rudder) {
|
|
elevator = -elevator;
|
|
rudder = -rudder;
|
|
}
|
|
if (elevons) {
|
|
// fake an elevon plane
|
|
float ch1 = aileron;
|
|
float ch2 = elevator;
|
|
aileron = (ch2-ch1)/2.0f;
|
|
// the minus does away with the need for RC2_REVERSED=-1
|
|
elevator = -(ch2+ch1)/2.0f;
|
|
|
|
// assume no rudder
|
|
rudder = 0;
|
|
} else if (vtail) {
|
|
// fake a vtail plane
|
|
float ch1 = elevator;
|
|
float ch2 = rudder;
|
|
// this matches VTAIL_OUTPUT==2
|
|
elevator = (ch2-ch1)/2.0f;
|
|
rudder = (ch2+ch1)/2.0f;
|
|
} else if (dspoilers) {
|
|
// fake a differential spoiler plane. Use outputs 1, 2, 4 and 5
|
|
float dspoiler1_left = filtered_servo_angle(input, 0);
|
|
float dspoiler1_right = filtered_servo_angle(input, 1);
|
|
float dspoiler2_left = filtered_servo_angle(input, 3);
|
|
float dspoiler2_right = filtered_servo_angle(input, 4);
|
|
float elevon_left = (dspoiler1_left + dspoiler2_left)/2;
|
|
float elevon_right = (dspoiler1_right + dspoiler2_right)/2;
|
|
aileron = (elevon_right-elevon_left)/2;
|
|
elevator = (elevon_left+elevon_right)/2;
|
|
rudder = fabsf(dspoiler1_right - dspoiler2_right)/2 - fabsf(dspoiler1_left - dspoiler2_left)/2;
|
|
}
|
|
//printf("Aileron: %.1f elevator: %.1f rudder: %.1f\n", aileron, elevator, rudder);
|
|
|
|
if (reverse_thrust) {
|
|
throttle = filtered_servo_angle(input, 2);
|
|
} else {
|
|
throttle = filtered_servo_range(input, 2);
|
|
}
|
|
|
|
float thrust = throttle;
|
|
|
|
battery_voltage = sitl->batt_voltage - 0.7*throttle;
|
|
battery_current = 50.0f*throttle;
|
|
|
|
if (ice_engine) {
|
|
thrust = icengine.update(input);
|
|
}
|
|
|
|
// calculate angle of attack
|
|
angle_of_attack = atan2f(velocity_air_bf.z, velocity_air_bf.x);
|
|
beta = atan2f(velocity_air_bf.y,velocity_air_bf.x);
|
|
|
|
if (tailsitter) {
|
|
/*
|
|
tailsitters get 4x the control surfaces
|
|
*/
|
|
aileron *= 4;
|
|
elevator *= 4;
|
|
rudder *= 4;
|
|
}
|
|
|
|
Vector3f force = getForce(aileron, elevator, rudder);
|
|
rot_accel = getTorque(aileron, elevator, rudder, thrust, force);
|
|
|
|
if (have_launcher) {
|
|
/*
|
|
simple simulation of a launcher
|
|
*/
|
|
if (launch_triggered) {
|
|
uint64_t now = AP_HAL::millis64();
|
|
if (launch_start_ms == 0) {
|
|
launch_start_ms = now;
|
|
}
|
|
if (now - launch_start_ms < launch_time*1000) {
|
|
force.x += mass * launch_accel;
|
|
force.z += mass * launch_accel/3;
|
|
}
|
|
} else {
|
|
// allow reset of catapult
|
|
launch_start_ms = 0;
|
|
}
|
|
}
|
|
|
|
// simulate engine RPM
|
|
rpm[0] = thrust * 7000;
|
|
|
|
// scale thrust to newtons
|
|
thrust *= thrust_scale;
|
|
|
|
accel_body = Vector3f(thrust, 0, 0) + force;
|
|
accel_body /= mass;
|
|
|
|
// add some noise
|
|
if (thrust_scale > 0) {
|
|
add_noise(fabsf(thrust) / thrust_scale);
|
|
}
|
|
|
|
if (on_ground() && !tailsitter) {
|
|
// add some ground friction
|
|
Vector3f vel_body = dcm.transposed() * velocity_ef;
|
|
accel_body.x -= vel_body.x * 0.3f;
|
|
}
|
|
}
|
|
|
|
/*
|
|
update the plane simulation by one time step
|
|
*/
|
|
void Plane::update(const struct sitl_input &input)
|
|
{
|
|
Vector3f rot_accel;
|
|
|
|
update_wind(input);
|
|
|
|
calculate_forces(input, rot_accel);
|
|
|
|
update_dynamics(rot_accel);
|
|
update_external_payload(input);
|
|
|
|
// update lat/lon/altitude
|
|
update_position();
|
|
time_advance();
|
|
|
|
// update magnetic field
|
|
update_mag_field_bf();
|
|
}
|