ardupilot/libraries/AP_Mount/AP_Mount_Xacti.cpp
2024-05-01 08:07:41 +10:00

1055 lines
40 KiB
C++

#include "AP_Mount_Xacti.h"
#if HAL_MOUNT_XACTI_ENABLED
#include <AP_HAL/AP_HAL.h>
#include <AP_AHRS/AP_AHRS.h>
#include <GCS_MAVLink/GCS.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
#include <AP_CANManager/AP_CANManager.h>
#include <AP_DroneCAN/AP_DroneCAN.h>
#include <AP_RTC/AP_RTC.h>
extern const AP_HAL::HAL& hal;
#define LOG_TAG "Mount"
#define XACTI_MSG_SEND_MIN_MS 20 // messages should not be sent to camera more often than 20ms
#define XACTI_DIGITAL_ZOOM_RATE_UPDATE_INTERVAL_MS 500 // digital zoom rate control updates 11% up or down every 0.5sec
#define XACTI_OPTICAL_ZOOM_RATE_UPDATE_INTERVAL_MS 250 // optical zoom rate control updates 6.6% up or down every 0.25sec
#define XACTI_STATUS_REQ_INTERVAL_MS 3000 // request status every 3 seconds
#define XACTI_SET_PARAM_QUEUE_SIZE 3 // three set-param requests may be queued
#define AP_MOUNT_XACTI_DEBUG 0
#define debug(fmt, args ...) do { if (AP_MOUNT_XACTI_DEBUG) { GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Xacti: " fmt, ## args); } } while (0)
bool AP_Mount_Xacti::_subscribed = false;
AP_Mount_Xacti::DetectedModules AP_Mount_Xacti::_detected_modules[];
HAL_Semaphore AP_Mount_Xacti::_sem_registry;
const char* AP_Mount_Xacti::send_text_prefix = "Xacti:";
const char* AP_Mount_Xacti::sensor_mode_str[] = { "RGB", "IR", "PIP", "NDVI" };
const char* AP_Mount_Xacti::_param_names[] = {"SingleShot", "Recording", "FocusMode",
"SensorMode", "DigitalZoomMagnification",
"FirmwareVersion", "Status", "DateTime",
"OpticalZoomMagnification"};
// Constructor
AP_Mount_Xacti::AP_Mount_Xacti(class AP_Mount &frontend, class AP_Mount_Params &params, uint8_t instance) :
AP_Mount_Backend(frontend, params, instance)
{
register_backend();
param_int_cb = FUNCTOR_BIND_MEMBER(&AP_Mount_Xacti::handle_param_get_set_response_int, bool, AP_DroneCAN*, const uint8_t, const char*, int32_t &);
param_string_cb = FUNCTOR_BIND_MEMBER(&AP_Mount_Xacti::handle_param_get_set_response_string, bool, AP_DroneCAN*, const uint8_t, const char*, AP_DroneCAN::string &);
param_save_cb = FUNCTOR_BIND_MEMBER(&AP_Mount_Xacti::handle_param_save_response, void, AP_DroneCAN*, const uint8_t, bool);
// static assert that Param enum matches parameter names array
static_assert((uint8_t)AP_Mount_Xacti::Param::LAST+1 == ARRAY_SIZE(AP_Mount_Xacti::_param_names), "AP_Mount_Xacti::_param_names array must match Param enum");
}
// init - performs any required initialisation for this instance
void AP_Mount_Xacti::init()
{
// instantiate parameter queue, return on failure so init fails
_set_param_int32_queue = new ObjectArray<SetParamQueueItem>(XACTI_SET_PARAM_QUEUE_SIZE);
if (_set_param_int32_queue == nullptr) {
GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "%s init failed", send_text_prefix);
return;
}
_initialised = true;
}
// update mount position - should be called periodically
void AP_Mount_Xacti::update()
{
// exit immediately if not initialised
if (!_initialised) {
return;
}
// return immediately if any message sent is unlikely to be processed
const uint32_t now_ms = AP_HAL::millis();
if (!is_safe_to_send(now_ms)) {
return;
}
// get firmware version
if (request_firmware_version(now_ms)) {
return;
}
// additional initial setup
if (_firmware_version.received) {
// set date and time
if (set_datetime(now_ms)) {
return;
}
// request camera capabilities
if (request_capabilities(now_ms)) {
return;
}
}
// request status
if (request_status(now_ms)) {
return;
}
// process queue of set parameter items
if (process_set_param_int32_queue()) {
return;
}
// periodically send copter attitude and GPS status
if (send_copter_att_status(now_ms)) {
// if message sent avoid sending other messages
return;
}
// update zoom rate control
if (update_zoom_rate_control(now_ms)) {
// if message sent avoid sending other messages
return;
}
// change to RC_TARGETING mode if RC input has changed
set_rctargeting_on_rcinput_change();
// update based on mount mode
switch (get_mode()) {
// move mount to a "retracted" position. To-Do: remove support and replace with a relaxed mode?
case MAV_MOUNT_MODE_RETRACT: {
const Vector3f &angle_bf_target = _params.retract_angles.get();
mnt_target.target_type = MountTargetType::ANGLE;
mnt_target.angle_rad.set(angle_bf_target*DEG_TO_RAD, false);
break;
}
case MAV_MOUNT_MODE_NEUTRAL: {
const Vector3f &angle_bf_target = _params.neutral_angles.get();
mnt_target.target_type = MountTargetType::ANGLE;
mnt_target.angle_rad.set(angle_bf_target*DEG_TO_RAD, false);
break;
}
case MAV_MOUNT_MODE_MAVLINK_TARGETING: {
// mavlink targets are set while handling the incoming message
break;
}
case MAV_MOUNT_MODE_RC_TARGETING: {
// update targets using pilot's RC inputs
MountTarget rc_target;
get_rc_target(mnt_target.target_type, rc_target);
switch (mnt_target.target_type) {
case MountTargetType::ANGLE:
mnt_target.angle_rad = rc_target;
break;
case MountTargetType::RATE:
mnt_target.rate_rads = rc_target;
break;
}
break;
}
// point mount to a GPS point given by the mission planner
case MAV_MOUNT_MODE_GPS_POINT:
if (get_angle_target_to_roi(mnt_target.angle_rad)) {
mnt_target.target_type = MountTargetType::ANGLE;
}
break;
// point mount to Home location
case MAV_MOUNT_MODE_HOME_LOCATION:
if (get_angle_target_to_home(mnt_target.angle_rad)) {
mnt_target.target_type = MountTargetType::ANGLE;
}
break;
// point mount to another vehicle
case MAV_MOUNT_MODE_SYSID_TARGET:
if (get_angle_target_to_sysid(mnt_target.angle_rad)) {
mnt_target.target_type = MountTargetType::ANGLE;
}
break;
default:
// we do not know this mode so raise internal error
INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control);
break;
}
// send target angles or rates depending on the target type
switch (mnt_target.target_type) {
case MountTargetType::ANGLE:
send_target_angles(mnt_target.angle_rad.pitch, mnt_target.angle_rad.yaw, mnt_target.angle_rad.yaw_is_ef);
break;
case MountTargetType::RATE:
send_target_rates(mnt_target.rate_rads.pitch, mnt_target.rate_rads.yaw, mnt_target.rate_rads.yaw_is_ef);
break;
}
}
// return true if healthy
bool AP_Mount_Xacti::healthy() const
{
// unhealthy until gimbal has been found and replied with firmware version and no motor errors
if (!_initialised || !_firmware_version.received || _motor_error) {
return false;
}
// unhealthy if attitude information NOT received recently
const uint32_t now_ms = AP_HAL::millis();
if (now_ms - _last_current_attitude_quat_ms > 1000) {
return false;
}
// if we get this far return healthy
return true;
}
// take a picture. returns true on success
bool AP_Mount_Xacti::take_picture()
{
// fail if camera errored
if (_camera_error) {
GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "%s unable to take pic", send_text_prefix);
return false;
}
return set_param_int32(Param::SingleShot, 0);
}
// start or stop video recording. returns true on success
// set start_recording = true to start record, false to stop recording
bool AP_Mount_Xacti::record_video(bool start_recording)
{
return set_param_int32(Param::Recording, start_recording ? 1 : 0);
}
// set zoom specified as a rate or percentage
bool AP_Mount_Xacti::set_zoom(ZoomType zoom_type, float zoom_value)
{
// zoom rate
if (zoom_type == ZoomType::RATE) {
if (is_zero(zoom_value)) {
// stop zooming
_zoom_rate_control.enabled = false;
} else {
// zoom in or out
_zoom_rate_control.enabled = true;
_zoom_rate_control.dir = (zoom_value < 0) ? -1 : 1;
}
return true;
}
// zoom percentage
if (zoom_type == ZoomType::PCT) {
if (capabilities.optical_zoom == Capability::True) {
// optical zoom capable cameras use combination of optical and digital zoom
// convert zoom percentage (0 ~ 100) to zoom times using linear interpolation
// optical zoom covers 1x to 2.5x, param values are in 100 to 250
// digital zoom covers 2.5x to 25x, param values are 100 to 1000
const float zoom_times = linear_interpolate(1, 25, zoom_value, 0, 100);
const uint16_t optical_zoom_param = constrain_uint16(uint16_t(zoom_times * 10) * 10, 100, 250);
const uint16_t digital_zoom_param = constrain_uint16(uint16_t(zoom_times * 0.4) * 100, 100, 1000);
bool ret = true;
if (optical_zoom_param != _last_optical_zoom_param_value) {
ret = set_param_int32(Param::OpticalZoomMagnification, optical_zoom_param);
}
if (digital_zoom_param != _last_digital_zoom_param_value) {
ret &= set_param_int32(Param::DigitalZoomMagnification, digital_zoom_param);
}
return ret;
}
// digital only zoom
// convert zoom percentage (0 ~ 100) to zoom parameter value (100, 200, 300, ... 1000)
// 0~11pct:100, 12~22pct:200, 23~33pct:300, 34~44pct:400, 45~55pct:500, 56~66pct:600, 67~77pct:700, 78~88pct:800, 89~99pct:900, 100:1000
const uint16_t zoom_param_value = uint16_t(linear_interpolate(1, 10, zoom_value, 0, 100)) * 100;
return set_param_int32(Param::DigitalZoomMagnification, zoom_param_value);
}
// unsupported zoom type
return false;
}
// set focus specified as rate, percentage or auto
// focus in = -1, focus hold = 0, focus out = 1
SetFocusResult AP_Mount_Xacti::set_focus(FocusType focus_type, float focus_value)
{
// convert focus type and value to parameter value
uint8_t focus_param_value;
switch (focus_type) {
case FocusType::RATE:
case FocusType::PCT:
// focus rate and percentage control not supported so simply switch to manual focus
// FocusMode of 0:Manual Focus
focus_param_value = 0;
break;
case FocusType::AUTO:
// FocusMode of 1:Single AutoFocus, 2:Continuous AutoFocus
focus_param_value = 2;
break;
default:
// unsupported forucs mode
return SetFocusResult::INVALID_PARAMETERS;
}
// set FocusMode parameter
return set_param_int32(Param::FocusMode, focus_param_value) ? SetFocusResult::ACCEPTED : SetFocusResult::FAILED;
}
// set camera lens as a value from 0 to 5
bool AP_Mount_Xacti::set_lens(uint8_t lens)
{
// sanity check
if (lens > (uint8_t)SensorsMode::NDVI) {
return false;
}
return set_param_int32(Param::SensorMode, lens);
}
// set_camera_source is functionally the same as set_lens except primary and secondary lenses are specified by type
// primary and secondary sources use the AP_Camera::CameraSource enum cast to uint8_t
bool AP_Mount_Xacti::set_camera_source(uint8_t primary_source, uint8_t secondary_source)
{
// maps primary and secondary source to xacti SensorsMode
SensorsMode new_sensor_mode;
switch (primary_source) {
case 0: // Default (RGB)
FALLTHROUGH;
case 1: // RGB
switch (secondary_source) {
case 0: // RGB + Default (None)
new_sensor_mode = SensorsMode::RGB;
break;
case 2: // PIP RGB+IR
new_sensor_mode = SensorsMode::PIP;
break;
default:
return false;
}
break;
case 2: // IR
if (secondary_source != 0) {
return false;
}
new_sensor_mode = SensorsMode::IR;
break;
case 3: // NDVI
if (secondary_source != 0) {
return false;
}
// NDVI + Default (None)
new_sensor_mode = SensorsMode::NDVI;
break;
default:
return false;
}
// send desired sensor mode to camera
return set_param_int32(Param::SensorMode, (uint8_t)new_sensor_mode);
}
// send camera information message to GCS
void AP_Mount_Xacti::send_camera_information(mavlink_channel_t chan) const
{
// exit immediately if not initialised
if (!_initialised) {
return;
}
static const uint8_t vendor_name[32] = "Xacti";
static uint8_t model_name[32] = "CX-GB100";
const char cam_definition_uri[140] {};
const float NaN = nanf("0x4152");
// capability flags
const uint32_t flags = CAMERA_CAP_FLAGS_CAPTURE_VIDEO |
CAMERA_CAP_FLAGS_CAPTURE_IMAGE |
CAMERA_CAP_FLAGS_HAS_BASIC_FOCUS;
// send CAMERA_INFORMATION message
mavlink_msg_camera_information_send(
chan,
AP_HAL::millis(), // time_boot_ms
vendor_name, // vendor_name uint8_t[32]
model_name, // model_name uint8_t[32]
_firmware_version.received ? _firmware_version.mav_ver : 0, // firmware version uint32_t
NaN, // focal_length float (mm)
NaN, // sensor_size_h float (mm)
NaN, // sensor_size_v float (mm)
0, // resolution_h uint16_t (pix)
0, // resolution_v uint16_t (pix)
0, // lens_id uint8_t
flags, // flags uint32_t (CAMERA_CAP_FLAGS)
0, // cam_definition_version uint16_t
cam_definition_uri, // cam_definition_uri char[140]
_instance + 1); // gimbal_device_id uint8_t
}
// send camera settings message to GCS
void AP_Mount_Xacti::send_camera_settings(mavlink_channel_t chan) const
{
const float NaN = nanf("0x4152");
// send CAMERA_SETTINGS message
mavlink_msg_camera_settings_send(
chan,
AP_HAL::millis(), // time_boot_ms
_recording_video ? CAMERA_MODE_VIDEO : CAMERA_MODE_IMAGE, // camera mode (0:image, 1:video, 2:image survey)
0, // zoomLevel float, percentage from 0 to 100, NaN if unknown
NaN); // focusLevel float, percentage from 0 to 100, NaN if unknown
}
// get attitude as a quaternion. returns true on success
bool AP_Mount_Xacti::get_attitude_quaternion(Quaternion& att_quat)
{
att_quat = _current_attitude_quat;
return true;
}
// send target pitch and yaw rates to gimbal
// yaw_is_ef should be true if yaw_rads target is an earth frame rate, false if body_frame
void AP_Mount_Xacti::send_target_rates(float pitch_rads, float yaw_rads, bool yaw_is_ef)
{
// send gimbal rate target to gimbal
send_gimbal_control(3, degrees(pitch_rads) * 100, degrees(yaw_rads) * 100);
}
// send target pitch and yaw angles to gimbal
// yaw_is_ef should be true if yaw_rad target is an earth frame angle, false if body_frame
void AP_Mount_Xacti::send_target_angles(float pitch_rad, float yaw_rad, bool yaw_is_ef)
{
// convert yaw to body frame
const float yaw_bf_rad = yaw_is_ef ? wrap_PI(yaw_rad - AP::ahrs().get_yaw()) : yaw_rad;
// send angle target to gimbal
send_gimbal_control(2, degrees(pitch_rad) * 100, degrees(yaw_bf_rad) * 100);
}
// subscribe to Xacti DroneCAN messages
void AP_Mount_Xacti::subscribe_msgs(AP_DroneCAN* ap_dronecan)
{
// return immediately if DroneCAN is unavailable
if (ap_dronecan == nullptr) {
GCS_SEND_TEXT(MAV_SEVERITY_CRITICAL, "%s DroneCAN subscribe failed", send_text_prefix);
return;
}
_subscribed = true;
if (Canard::allocate_sub_arg_callback(ap_dronecan, &handle_gimbal_attitude_status, ap_dronecan->get_driver_index()) == nullptr) {
AP_BoardConfig::allocation_error("gimbal_attitude_status_sub");
_subscribed = false;
}
if (Canard::allocate_sub_arg_callback(ap_dronecan, &handle_gnss_status_req, ap_dronecan->get_driver_index()) == nullptr) {
AP_BoardConfig::allocation_error("gnss_status_req_sub");
_subscribed = false;
}
}
// register backend in detected modules array used to map DroneCAN port and node id to backend
void AP_Mount_Xacti::register_backend()
{
WITH_SEMAPHORE(_sem_registry);
// add this backend to _detected_modules array
_detected_modules[_instance].driver = this;
// return if devid is zero meaning this backend has not yet been associated with a mount
const uint32_t devid = (uint32_t)_params.dev_id.get();
if (devid == 0) {
return;
}
// get DroneCan port from device id
const uint8_t can_driver_index = AP_HAL::Device::devid_get_bus(devid);
const uint8_t can_num_drivers = AP::can().get_num_drivers();
for (uint8_t i = 0; i < can_num_drivers; i++) {
AP_DroneCAN *ap_dronecan = AP_DroneCAN::get_dronecan(i);
if (ap_dronecan != nullptr && ap_dronecan->get_driver_index() == can_driver_index) {
_detected_modules[_instance].ap_dronecan = ap_dronecan;
}
}
// get node_id from device id
_detected_modules[_instance].node_id = AP_HAL::Device::devid_get_address(devid);
}
// find backend associated with the given dronecan port and node_id. also associates backends with zero node ids
// returns pointer to backend on success, nullptr on failure
AP_Mount_Xacti* AP_Mount_Xacti::get_dronecan_backend(AP_DroneCAN* ap_dronecan, uint8_t node_id)
{
WITH_SEMAPHORE(_sem_registry);
// exit immediately if DroneCAN is unavailable or invalid node id
if (ap_dronecan == nullptr || node_id == 0) {
return nullptr;
}
// search for backend with matching dronecan port and node id
for (uint8_t i = 0; i < ARRAY_SIZE(_detected_modules); i++) {
if (_detected_modules[i].driver != nullptr &&
_detected_modules[i].ap_dronecan == ap_dronecan &&
_detected_modules[i].node_id == node_id ) {
return _detected_modules[i].driver;
}
}
// if we got this far, this dronecan port and node id are not associated with any backend
// associate with first backend with node id of zero
for (uint8_t i = 0; i < ARRAY_SIZE(_detected_modules); i++) {
if (_detected_modules[i].driver != nullptr &&
_detected_modules[i].node_id == 0) {
_detected_modules[i].ap_dronecan = ap_dronecan;
_detected_modules[i].node_id = node_id;
const auto dev_id = AP_HAL::Device::make_bus_id(AP_HAL::Device::BUS_TYPE_UAVCAN,
ap_dronecan->get_driver_index(),
node_id, 0);
_detected_modules[i].driver->set_dev_id(dev_id);
return _detected_modules[i].driver;
}
}
return nullptr;
}
// handle xacti gimbal attitude status message
void AP_Mount_Xacti::handle_gimbal_attitude_status(AP_DroneCAN* ap_dronecan, const CanardRxTransfer& transfer, const com_xacti_GimbalAttitudeStatus &msg)
{
// fetch the matching backend driver, node id and gimbal id backend instance
AP_Mount_Xacti* driver = get_dronecan_backend(ap_dronecan, transfer.source_node_id);
if (driver == nullptr) {
return;
}
// convert body-frame Euler angles to Quaternion. Note yaw direction is reversed from normal
driver->_current_attitude_quat.from_euler(radians(msg.gimbal_roll * 0.01), radians(msg.gimbal_pitch * 0.01), radians(-msg.gimbal_yaw * 0.01));
driver->_last_current_attitude_quat_ms = AP_HAL::millis();
}
// handle xacti gnss status request message
void AP_Mount_Xacti::handle_gnss_status_req(AP_DroneCAN* ap_dronecan, const CanardRxTransfer& transfer, const com_xacti_GnssStatusReq &msg)
{
// sanity check dronecan port
if (ap_dronecan == nullptr) {
return;
}
// get current location
uint8_t gps_status = 2;
Location loc;
if (!AP::ahrs().get_location(loc)) {
gps_status = 0;
}
// get date and time
uint16_t year, ms;
uint8_t month, day, hour, min, sec;
#if AP_RTC_ENABLED
if (!AP::rtc().get_date_and_time_utc(year, month, day, hour, min, sec, ms)) {
year = month = day = hour = min = sec = 0;
}
#else
year = month = day = hour = min = sec = 0;
(void)ms;
#endif
// send xacti specific gnss status message
com_xacti_GnssStatus xacti_gnss_status_msg {};
xacti_gnss_status_msg.gps_status = gps_status;
xacti_gnss_status_msg.order = msg.requirement;
xacti_gnss_status_msg.remain_buffer = 1;
xacti_gnss_status_msg.utc_year = year;
xacti_gnss_status_msg.utc_month = month + 1;
xacti_gnss_status_msg.utc_day = day;
xacti_gnss_status_msg.utc_hour = hour;
xacti_gnss_status_msg.utc_minute = min;
xacti_gnss_status_msg.utc_seconds = sec;
xacti_gnss_status_msg.latitude = loc.lat * 1e-7;
xacti_gnss_status_msg.longitude = loc.lng * 1e-7;
xacti_gnss_status_msg.altitude = loc.alt * 1e-2;
ap_dronecan->xacti_gnss_status.broadcast(xacti_gnss_status_msg);
}
// handle param get/set response
bool AP_Mount_Xacti::handle_param_get_set_response_int(AP_DroneCAN* ap_dronecan, uint8_t node_id, const char* name, int32_t &value)
{
// error string prefix to save on flash
const char* err_prefix_str = "Xacti: failed to";
// take picture
if (strcmp(name, get_param_name_str(Param::SingleShot)) == 0) {
if (value < 0) {
GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "%s take pic", err_prefix_str);
}
return false;
}
// recording
if (strcmp(name, get_param_name_str(Param::Recording)) == 0) {
if (value < 0) {
_recording_video = false;
GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "%s record", err_prefix_str);
} else {
_recording_video = (value == 1);
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "%s recording %s", send_text_prefix, _recording_video ? "ON" : "OFF");
}
return false;
}
// focus
if (strcmp(name, get_param_name_str(Param::FocusMode)) == 0) {
if (value < 0) {
GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "%s change focus", err_prefix_str);
} else {
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "%s %s focus", send_text_prefix, value == 0 ? "manual" : "auto");
}
return false;
}
// camera lens (aka sensor mode)
if (strcmp(name, get_param_name_str(Param::SensorMode)) == 0) {
if (value < 0) {
GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "%s change lens", err_prefix_str);
} else if ((uint32_t)value < ARRAY_SIZE(sensor_mode_str)) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "%s %s", send_text_prefix, sensor_mode_str[(uint8_t)value]);
}
return false;
}
// digital zoom
if (strcmp(name, get_param_name_str(Param::DigitalZoomMagnification)) == 0) {
if (value < 0) {
GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "%s change zoom", err_prefix_str);
// disable zoom rate control (if active) to avoid repeated failures
_zoom_rate_control.enabled = false;
} else if (value >= 100 && value <= 1000) {
_last_digital_zoom_param_value = value;
}
return false;
}
// optical zoom
if (strcmp(name, get_param_name_str(Param::OpticalZoomMagnification)) == 0) {
if (value < 0) {
GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "%s change optical zoom", err_prefix_str);
// disable zoom rate control (if active) to avoid repeated failures
_zoom_rate_control.enabled = false;
} else if (value >= 100 && value <= 250) {
capabilities.optical_zoom = Capability::True;
capabilities.received = true;
_last_optical_zoom_param_value = value;
}
return false;
}
// unhandled parameter get or set
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "%s get/set %s res:%ld", send_text_prefix, name, (long int)value);
return false;
}
// handle param get/set response
bool AP_Mount_Xacti::handle_param_get_set_response_string(AP_DroneCAN* ap_dronecan, uint8_t node_id, const char* name, AP_DroneCAN::string &value)
{
if (strcmp(name, get_param_name_str(Param::FirmwareVersion)) == 0) {
_firmware_version.received = true;
const uint8_t len = MIN(value.len, ARRAY_SIZE(_firmware_version.str)-1);
memcpy(_firmware_version.str, (const char*)value.data, len);
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Mount: Xacti fw:%s", _firmware_version.str);
// firmware str from gimbal is of the format YYMMDD[b]xx. Convert to uint32 for reporting to GCS
if (len >= 9) {
const char major_str[3] = {_firmware_version.str[0], _firmware_version.str[1], 0};
const char minor_str[3] = {_firmware_version.str[2], _firmware_version.str[3], 0};
const char patch_str[3] = {_firmware_version.str[4], _firmware_version.str[5], 0};
const char dev_str[3] = {_firmware_version.str[7], _firmware_version.str[8], 0};
const uint8_t major_ver_num = atoi(major_str) & 0xFF;
const uint8_t minor_ver_num = atoi(minor_str) & 0xFF;
const uint8_t patch_ver_num = atoi(patch_str) & 0xFF;
const uint8_t dev_ver_num = atoi(dev_str) & 0xFF;
_firmware_version.mav_ver = UINT32_VALUE(dev_ver_num, patch_ver_num, minor_ver_num, major_ver_num);
}
return false;
} else if (strcmp(name, get_param_name_str(Param::DateTime)) == 0) {
// display when time and date have been set
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "%s datetime set %s", send_text_prefix, (const char*)value.data);
return false;
} else if (strcmp(name, get_param_name_str(Param::Status)) == 0) {
// check for expected length
const char* error_str = "error";
if (value.len != sizeof(_status)) {
INTERNAL_ERROR(AP_InternalError::error_t::invalid_arg_or_result);
return false;
}
// backup error status and copy to structure
const uint32_t last_error_status = _status.error_status;
memcpy(&_status, value.data, value.len);
// report change in status
uint32_t changed_bits = last_error_status ^ _status.error_status;
const char* ok_str = "OK";
if (changed_bits & (uint32_t)ErrorStatus::TIME_NOT_SET) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "%s time %sset", send_text_prefix, _status.error_status & (uint32_t)ErrorStatus::TIME_NOT_SET ? "not " : "");
if (_status.error_status & (uint32_t)ErrorStatus::TIME_NOT_SET) {
// try to set time again
_datetime.set = false;
}
}
if (changed_bits & (uint32_t)ErrorStatus::MEDIA_ERROR) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "%s media %s", send_text_prefix, _status.error_status & (uint32_t)ErrorStatus::MEDIA_ERROR ? error_str : ok_str);
}
if (changed_bits & (uint32_t)ErrorStatus::LENS_ERROR) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "%s lens %s", send_text_prefix, _status.error_status & (uint32_t)ErrorStatus::LENS_ERROR ? error_str : ok_str);
}
if (changed_bits & (uint32_t)ErrorStatus::MOTOR_INIT_ERROR) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "%s motor %s", send_text_prefix, _status.error_status & (uint32_t)ErrorStatus::MOTOR_INIT_ERROR ? "init error" : ok_str);
}
if (changed_bits & (uint32_t)ErrorStatus::MOTOR_OPERATION_ERROR) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "%s motor op %s", send_text_prefix, _status.error_status & (uint32_t)ErrorStatus::MOTOR_OPERATION_ERROR ? error_str : ok_str);
}
if (changed_bits & (uint32_t)ErrorStatus::GIMBAL_CONTROL_ERROR) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "%s control %s", send_text_prefix, _status.error_status & (uint32_t)ErrorStatus::GIMBAL_CONTROL_ERROR ? error_str : ok_str);
}
if (changed_bits & (uint32_t)ErrorStatus::TEMP_WARNING) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "%s temp %s", send_text_prefix, _status.error_status & (uint32_t)ErrorStatus::TEMP_WARNING ? "warning" : ok_str);
}
// set motor error for health reporting
_motor_error = _status.error_status & ((uint32_t)ErrorStatus::MOTOR_INIT_ERROR | (uint32_t)ErrorStatus::MOTOR_OPERATION_ERROR | (uint32_t)ErrorStatus::GIMBAL_CONTROL_ERROR);
_camera_error = _status.error_status & ((uint32_t)ErrorStatus::LENS_ERROR | (uint32_t)ErrorStatus::MEDIA_ERROR);
return false;
}
// unhandled parameter get or set
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "%s get/set string %s res:%s", send_text_prefix, name, (const char*)value.data);
return false;
}
void AP_Mount_Xacti::handle_param_save_response(AP_DroneCAN* ap_dronecan, const uint8_t node_id, bool success)
{
// display failure to save parameter
if (!success) {
GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "%s CAM%u failed to set param", send_text_prefix, (int)_instance+1);
}
}
// get parameter name for a particular param enum value
// returns an empty string if not found (which should never happen)
const char* AP_Mount_Xacti::get_param_name_str(Param param) const
{
// check to avoid reading beyond end of array. This should never happen
if ((uint8_t)param > ARRAY_SIZE(_param_names)) {
INTERNAL_ERROR(AP_InternalError::error_t::invalid_arg_or_result);
return "";
}
return _param_names[(uint8_t)param];
}
// helper function to set integer parameters
bool AP_Mount_Xacti::set_param_int32(Param param, int32_t param_value)
{
if (_set_param_int32_queue == nullptr) {
return false;
}
// set param request added to queue to be sent. throttling requests improves reliability
return _set_param_int32_queue->push(SetParamQueueItem{param, param_value});
}
// helper function to set string parameters
bool AP_Mount_Xacti::set_param_string(Param param, const AP_DroneCAN::string& param_value)
{
if (_detected_modules[_instance].ap_dronecan == nullptr) {
return false;
}
// convert param to string
const char* param_name_str = get_param_name_str(param);
if (param_name_str == nullptr) {
return false;
}
if (_detected_modules[_instance].ap_dronecan->set_parameter_on_node(_detected_modules[_instance].node_id, param_name_str, param_value, &param_string_cb)) {
last_send_getset_param_ms = AP_HAL::millis();
return true;
}
return false;
}
// helper function to get string parameters
bool AP_Mount_Xacti::get_param_string(Param param)
{
if (_detected_modules[_instance].ap_dronecan == nullptr) {
return false;
}
// convert param to string
const char* param_name_str = get_param_name_str(param);
if (_detected_modules[_instance].ap_dronecan->get_parameter_on_node(_detected_modules[_instance].node_id, param_name_str, &param_string_cb)) {
last_send_getset_param_ms = AP_HAL::millis();
return true;
}
return false;
}
// process queue of set parameter items
bool AP_Mount_Xacti::process_set_param_int32_queue()
{
if ((_set_param_int32_queue == nullptr) || (_detected_modules[_instance].ap_dronecan == nullptr)) {
return false;
}
SetParamQueueItem param_to_set;
if (_set_param_int32_queue->pop(param_to_set)) {
// convert param to string
const char* param_name_str = get_param_name_str(param_to_set.param);
if (_detected_modules[_instance].ap_dronecan->set_parameter_on_node(_detected_modules[_instance].node_id, param_name_str, param_to_set.value, &param_int_cb)) {
last_send_getset_param_ms = AP_HAL::millis();
return true;
}
return false;
}
return false;
}
// send gimbal control message via DroneCAN
// mode is 2:angle control or 3:rate control
// pitch_cd is pitch angle in centi-degrees or pitch rate in cds
// yaw_cd is angle in centi-degrees or yaw rate in cds
void AP_Mount_Xacti::send_gimbal_control(uint8_t mode, int16_t pitch_cd, int16_t yaw_cd)
{
// exit immediately if no DroneCAN port
if (_detected_modules[_instance].ap_dronecan == nullptr) {
return;
}
// send at no faster than 5hz
const uint32_t now_ms = AP_HAL::millis();
if (now_ms - last_send_gimbal_control_ms < 200) {
return;
}
last_send_gimbal_control_ms = now_ms;
// send xacti specific gimbal control message
com_xacti_GimbalControlData gimbal_control_data_msg {};
gimbal_control_data_msg.pitch_cmd_type = mode;
gimbal_control_data_msg.yaw_cmd_type = mode;
gimbal_control_data_msg.pitch_cmd_value = pitch_cd;
gimbal_control_data_msg.yaw_cmd_value = -yaw_cd;
_detected_modules[_instance].ap_dronecan->xacti_gimbal_control_data.broadcast(gimbal_control_data_msg);
}
// send copter attitude status message to gimbal. now_ms is current system time
// returns true if sent so that we avoid immediately trying to also send other messages
bool AP_Mount_Xacti::send_copter_att_status(uint32_t now_ms)
{
// exit immediately if no DroneCAN port
if (_detected_modules[_instance].ap_dronecan == nullptr) {
return false;
}
// send at no faster than 5hz
if (now_ms - last_send_copter_att_status_ms < 100) {
return false;
}
// send xacti specific vehicle attitude message
Quaternion veh_att;
if (!AP::ahrs().get_quaternion(veh_att)) {
return false;
}
last_send_copter_att_status_ms = now_ms;
com_xacti_CopterAttStatus copter_att_status_msg {};
copter_att_status_msg.quaternion_wxyz_e4[0] = veh_att.q1 * 1e4;
copter_att_status_msg.quaternion_wxyz_e4[1] = veh_att.q2 * 1e4;
copter_att_status_msg.quaternion_wxyz_e4[2] = veh_att.q3 * 1e4;
copter_att_status_msg.quaternion_wxyz_e4[3] = veh_att.q4 * 1e4;
copter_att_status_msg.reserved.len = 2;
copter_att_status_msg.reserved.data[0] = 0;
copter_att_status_msg.reserved.data[1] = 0;
_detected_modules[_instance].ap_dronecan->xacti_copter_att_status.broadcast(copter_att_status_msg);
return true;
}
// update zoom rate controller. now_ms is current system time
// returns true if sent so that we avoid immediately trying to also send other messages
bool AP_Mount_Xacti::update_zoom_rate_control(uint32_t now_ms)
{
// return immediately if zoom rate control is not enabled
if (!_zoom_rate_control.enabled) {
return false;
}
// we are controlling optical zoom if the camera has it and we are below the optical zoom upper limit
// or at the optical zoom upper limit, the lower digital zoom limit and are zooming out
bool optical_zoom_control = (capabilities.optical_zoom == Capability::True) &&
((_last_optical_zoom_param_value < 250) ||
((_last_optical_zoom_param_value == 250) && (_last_digital_zoom_param_value == 100) && (_zoom_rate_control.dir < 0)));
// update every 0.25 or 0.5 sec
const uint32_t update_interval_ms = optical_zoom_control ? XACTI_OPTICAL_ZOOM_RATE_UPDATE_INTERVAL_MS : XACTI_DIGITAL_ZOOM_RATE_UPDATE_INTERVAL_MS;
if (now_ms - _zoom_rate_control.last_update_ms < update_interval_ms) {
return false;
}
_zoom_rate_control.last_update_ms = now_ms;
// optical zoom
if (optical_zoom_control) {
const uint16_t optical_zoom_value = _last_optical_zoom_param_value + _zoom_rate_control.dir * 10;
// if reached lower limit of optical zoom, disable zoom control
if (optical_zoom_value < 100) {
_zoom_rate_control.enabled = false;
return false;
}
// send desired optical zoom to camera
return set_param_int32(Param::OpticalZoomMagnification, MIN(optical_zoom_value, 250));
}
// digital zoom
const uint16_t digital_zoom_value = _last_digital_zoom_param_value + _zoom_rate_control.dir * 100;
// if reached limit then disable zoom
if (((capabilities.optical_zoom != Capability::True) && (digital_zoom_value < 100)) || (digital_zoom_value > 1000)) {
_zoom_rate_control.enabled = false;
return false;
}
// send desired digital zoom to camera
return set_param_int32(Param::DigitalZoomMagnification, digital_zoom_value);
}
// request firmware version. now_ms should be current system time (reduces calls to AP_HAL::millis)
// returns true if sent so that we avoid immediately trying to also send other messages
bool AP_Mount_Xacti::request_firmware_version(uint32_t now_ms)
{
// return immediately if already have version or no dronecan
if (_firmware_version.received) {
return false;
}
// send request once per second until received
if (now_ms - _firmware_version.last_request_ms < 1000) {
return false;
}
_firmware_version.last_request_ms = now_ms;
return get_param_string(Param::FirmwareVersion);
}
// request parameters used to determine camera capabilities. now_ms is current system time
// returns true if a param get/set was sent so that we avoid sending other messages
bool AP_Mount_Xacti::request_capabilities(uint32_t now_ms)
{
// return immediately if we have already determined this models capabilities
if (capabilities.received) {
return false;
}
// send requests once per second until received
if (now_ms - capabilities.last_request_ms < 1000) {
return false;
}
capabilities.last_request_ms = now_ms;
// record start time
if (capabilities.first_request_ms == 0) {
capabilities.first_request_ms = now_ms;
}
// timeout after 10 seconds
if (now_ms - capabilities.first_request_ms > 10000) {
capabilities.optical_zoom = Capability::False;
capabilities.received = true;
return false;
}
// optical zoom: try setting optical zoom to 1x
// return is handled in handle_param_get_set_response_int
return set_param_int32(Param::OpticalZoomMagnification, 100);
}
// set date and time. now_ms is current system time
bool AP_Mount_Xacti::set_datetime(uint32_t now_ms)
{
// return immediately if gimbal's date/time has been set
if (_datetime.set) {
return false;
}
// attempt to set datetime once per second until received
if (now_ms - _datetime.last_request_ms < 1000) {
return false;
}
_datetime.last_request_ms = now_ms;
// get date and time
uint16_t year, ms;
uint8_t month, day, hour, min, sec;
#if AP_RTC_ENABLED
if (!AP::rtc().get_date_and_time_utc(year, month, day, hour, min, sec, ms)) {
return false;
}
#else
(void)ms;
return false;
#endif
// date time is of the format YYYYMMDDHHMMSS (14 bytes)
// convert month from 0~11 to 1~12 range
AP_DroneCAN::string datetime_string {};
const int num_bytes = snprintf((char *)datetime_string.data, sizeof(AP_DroneCAN::string::data), "%04u%02u%02u%02u%02u%02u",
(unsigned)year, (unsigned)month+1, (unsigned)day, (unsigned)hour, (unsigned)min, (unsigned)sec);
// sanity check bytes to be sent
if (num_bytes != 14) {
INTERNAL_ERROR(AP_InternalError::error_t::invalid_arg_or_result);
return false;
}
datetime_string.len = num_bytes;
_datetime.set = set_param_string(Param::DateTime, datetime_string);
if (!_datetime.set) {
GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "%s failed to set date/time", send_text_prefix);
}
return _datetime.set;
}
// request status. now_ms should be current system time (reduces calls to AP_HAL::millis)
// returns true if sent so that we avoid immediately trying to also send other messages
bool AP_Mount_Xacti::request_status(uint32_t now_ms)
{
// return immediately if 3 seconds has not passed
if (now_ms - _status_report.last_request_ms < XACTI_STATUS_REQ_INTERVAL_MS) {
return false;
}
_status_report.last_request_ms = now_ms;
return get_param_string(Param::Status);
}
// check if safe to send message (if messages sent too often camera will not respond)
// now_ms should be current system time (reduces calls to AP_HAL::millis)
bool AP_Mount_Xacti::is_safe_to_send(uint32_t now_ms) const
{
// check time since last attitude sent
if (now_ms - last_send_copter_att_status_ms < XACTI_MSG_SEND_MIN_MS) {
return false;
}
// check time since last angle target sent
if (now_ms - last_send_gimbal_control_ms < XACTI_MSG_SEND_MIN_MS) {
return false;
}
// check time since last set param message sent
if (now_ms - last_send_getset_param_ms < XACTI_MSG_SEND_MIN_MS) {
return false;
}
return true;
}
#endif // HAL_MOUNT_XACTI_ENABLED