ardupilot/libraries/AC_AutoTune/AC_AutoTune.h

444 lines
18 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
support for autotune of multirotors. Based on original autotune code from ArduCopter, written by Leonard Hall
Converted to a library by Andrew Tridgell
*/
#pragma once
#include <AP_HAL/AP_HAL.h>
#include <AC_AttitudeControl/AC_AttitudeControl.h>
#include <AC_AttitudeControl/AC_PosControl.h>
#include <AP_Math/AP_Math.h>
#include "AC_AutoTune_FreqResp.h"
#define AUTOTUNE_AXIS_BITMASK_ROLL 1
#define AUTOTUNE_AXIS_BITMASK_PITCH 2
#define AUTOTUNE_AXIS_BITMASK_YAW 4
#define AUTOTUNE_SUCCESS_COUNT 4 // The number of successful iterations we need to freeze at current gains
// Auto Tune message ids for ground station
#define AUTOTUNE_MESSAGE_STARTED 0
#define AUTOTUNE_MESSAGE_STOPPED 1
#define AUTOTUNE_MESSAGE_SUCCESS 2
#define AUTOTUNE_MESSAGE_FAILED 3
#define AUTOTUNE_MESSAGE_SAVED_GAINS 4
#define AUTOTUNE_MESSAGE_TESTING 5
#define AUTOTUNE_ANNOUNCE_INTERVAL_MS 2000
class AC_AutoTune
{
public:
// constructor
AC_AutoTune();
// main run loop
virtual void run();
// save gained, called on disarm
virtual void save_tuning_gains();
// stop tune, reverting gains
void stop();
// reset Autotune so that gains are not saved again and autotune can be run again.
void reset() {
mode = UNINITIALISED;
axes_completed = 0;
}
protected:
// axis that can be tuned
enum AxisType {
ROLL = 0, // roll axis is being tuned (either angle or rate)
PITCH = 1, // pitch axis is being tuned (either angle or rate)
YAW = 2, // pitch axis is being tuned (either angle or rate)
};
//
// methods that must be supplied by the vehicle specific subclass
//
virtual bool init(void) = 0;
// get pilot input for desired climb rate
virtual float get_pilot_desired_climb_rate_cms(void) const = 0;
// get pilot input for designed roll and pitch, and yaw rate
virtual void get_pilot_desired_rp_yrate_cd(float &roll_cd, float &pitch_cd, float &yaw_rate_cds) = 0;
// init pos controller Z velocity and accel limits
virtual void init_z_limits() = 0;
// log PIDs at full rate for during twitch
virtual void log_pids() = 0;
// return true if we have a good position estimate
virtual bool position_ok();
// internal init function, should be called from init()
bool init_internals(bool use_poshold,
AC_AttitudeControl *attitude_control,
AC_PosControl *pos_control,
AP_AHRS_View *ahrs_view,
AP_InertialNav *inertial_nav);
// initialise position controller
bool init_position_controller();
// main state machine to level vehicle, perform a test and update gains
// directly updates attitude controller with targets
void control_attitude();
//
// methods to load and save gains
//
// backup original gains and prepare for start of tuning
void backup_gains_and_initialise();
// switch to use original gains
void load_orig_gains();
// switch to gains found by last successful autotune
void load_tuned_gains();
// load gains used between tests. called during testing mode's update-gains step to set gains ahead of return-to-level step
void load_intra_test_gains();
// load gains for next test. relies on axis variable being set
virtual void load_test_gains();
// get intra test rate I gain for the specified axis
virtual float get_intra_test_ri(AxisType test_axis) = 0;
// get tuned rate I gain for the specified axis
virtual float get_tuned_ri(AxisType test_axis) = 0;
// get tuned yaw rate d gain
virtual float get_tuned_yaw_rd() = 0;
// test init and run methods that should be overridden for each vehicle
virtual void test_init() = 0;
virtual void test_run(AxisType test_axis, const float dir_sign) = 0;
// return true if user has enabled autotune for roll, pitch or yaw axis
bool roll_enabled() const;
bool pitch_enabled() const;
bool yaw_enabled() const;
void twitching_test_rate(float rate, float rate_target, float &meas_rate_min, float &meas_rate_max);
void twitching_abort_rate(float angle, float rate, float angle_max, float meas_rate_min);
void twitching_test_angle(float angle, float rate, float angle_target, float &meas_angle_min, float &meas_angle_max, float &meas_rate_min, float &meas_rate_max);
void twitching_measure_acceleration(float &rate_of_change, float rate_measurement, float &rate_measurement_max) const;
// twitch test functions for multicopter
void twitch_test_init();
void twitch_test_run(AxisType test_axis, const float dir_sign);
// update gains for the rate p up tune type
virtual void updating_rate_p_up_all(AxisType test_axis)=0;
// update gains for the rate p down tune type
virtual void updating_rate_p_down_all(AxisType test_axis)=0;
// update gains for the rate d up tune type
virtual void updating_rate_d_up_all(AxisType test_axis)=0;
// update gains for the rate d down tune type
virtual void updating_rate_d_down_all(AxisType test_axis)=0;
// update gains for the angle p up tune type
virtual void updating_angle_p_up_all(AxisType test_axis)=0;
// update gains for the angle p down tune type
virtual void updating_angle_p_down_all(AxisType test_axis)=0;
// returns true if rate P gain of zero is acceptable for this vehicle
virtual bool allow_zero_rate_p() = 0;
// returns true if max tested accel is used for parameter
virtual bool set_accel_to_max_test_value() = 0;
// get minimum rate P (for any axis)
virtual float get_rp_min() const = 0;
// get minimum angle P (for any axis)
virtual float get_sp_min() const = 0;
// get minimum rate Yaw filter value
virtual float get_yaw_rate_filt_min() const = 0;
// reverse direction for twitch test
virtual bool twitch_reverse_direction() = 0;
// get attitude for slow position hold in autotune mode
void get_poshold_attitude(float &roll_cd, float &pitch_cd, float &yaw_cd);
virtual void Log_AutoTune() = 0;
virtual void Log_AutoTuneDetails() = 0;
virtual void Log_AutoTuneSweep() = 0;
// send message with high level status (e.g. Started, Stopped)
void update_gcs(uint8_t message_id) const;
// send lower level step status (e.g. Pilot overrides Active)
void send_step_string();
// convert latest level issue to string for reporting
const char *level_issue_string() const;
// convert tune type to string for reporting
const char *type_string() const;
// send intermittant updates to user on status of tune
virtual void do_gcs_announcements() = 0;
enum struct LevelIssue {
NONE,
ANGLE_ROLL,
ANGLE_PITCH,
ANGLE_YAW,
RATE_ROLL,
RATE_PITCH,
RATE_YAW,
};
// check if current is greater than maximum and update level_problem structure
bool check_level(const enum LevelIssue issue, const float current, const float maximum);
// returns true if vehicle is close to level
bool currently_level();
// autotune modes (high level states)
enum TuneMode {
UNINITIALISED = 0, // autotune has never been run
TUNING = 1, // autotune is testing gains
SUCCESS = 2, // tuning has completed, user is flight testing the new gains
FAILED = 3, // tuning has failed, user is flying on original gains
};
// steps performed while in the tuning mode
enum StepType {
WAITING_FOR_LEVEL = 0, // autotune is waiting for vehicle to return to level before beginning the next twitch
TESTING = 1, // autotune has begun a test and is watching the resulting vehicle movement
UPDATE_GAINS = 2 // autotune has completed a test and is updating the gains based on the results
};
// mini steps performed while in Tuning mode, Testing step
enum TuneType {
RD_UP = 0, // rate D is being tuned up
RD_DOWN = 1, // rate D is being tuned down
RP_UP = 2, // rate P is being tuned up
RP_DOWN = 3, // rate P is being tuned down
RFF_UP = 4, // rate FF is being tuned up
RFF_DOWN = 5, // rate FF is being tuned down
SP_UP = 6, // angle P is being tuned up
SP_DOWN = 7, // angle P is being tuned down
MAX_GAINS = 8, // max allowable stable gains are determined
TUNE_COMPLETE = 9 // Reached end of tuning
};
TuneType tune_seq[6]; // holds sequence of tune_types to be performed
uint8_t tune_seq_curr; // current tune sequence step
virtual void set_tune_sequence() = 0;
// type of gains to load
enum GainType {
GAIN_ORIGINAL = 0,
GAIN_TEST = 1,
GAIN_INTRA_TEST = 2,
GAIN_TUNED = 3,
};
void load_gains(enum GainType gain_type);
TuneMode mode; // see TuneMode for what modes are allowed
bool pilot_override; // true = pilot is overriding controls so we suspend tuning temporarily
AxisType axis; // current axis being tuned. see AxisType enum
bool positive_direction; // false = tuning in negative direction (i.e. left for roll), true = positive direction (i.e. right for roll)
StepType step; // see StepType for what steps are performed
TuneType tune_type; // see TuneType
bool ignore_next; // true = ignore the next test
bool twitch_first_iter; // true on first iteration of a twitch (used to signal we must step the attitude or rate target)
bool use_poshold; // true = enable position hold
bool have_position; // true = start_position is value
Vector3f start_position; // target when holding position as an offset from EKF origin in cm in NEU frame
uint8_t axes_completed; // bitmask of completed axes
// variables
uint32_t override_time; // the last time the pilot overrode the controls
float test_rate_min; // the minimum angular rate achieved during TESTING_RATE step
float test_rate_max; // the maximum angular rate achieved during TESTING_RATE step
float test_angle_min; // the minimum angle achieved during TESTING_ANGLE step
float test_angle_max; // the maximum angle achieved during TESTING_ANGLE step
uint32_t step_start_time_ms; // start time of current tuning step (used for timeout checks)
uint32_t level_start_time_ms; // start time of waiting for level
uint32_t level_fail_warning_time_ms; // last time level failure warning message was sent to GCS
uint32_t step_time_limit_ms; // time limit of current autotune process
int8_t counter; // counter for tuning gains
float target_rate, start_rate; // target and start rate
float target_angle, start_angle; // target and start angles
float desired_yaw_cd; // yaw heading during tune
float rate_max, test_accel_max; // maximum acceleration variables
float step_scaler; // scaler to reduce maximum target step
float abort_angle; // Angle that test is aborted
LowPassFilterFloat rotation_rate_filt; // filtered rotation rate in radians/second
// backup of currently being tuned parameter values
float orig_roll_rp, orig_roll_ri, orig_roll_rd, orig_roll_rff, orig_roll_fltt, orig_roll_smax, orig_roll_sp, orig_roll_accel;
float orig_pitch_rp, orig_pitch_ri, orig_pitch_rd, orig_pitch_rff, orig_pitch_fltt, orig_pitch_smax, orig_pitch_sp, orig_pitch_accel;
float orig_yaw_rp, orig_yaw_ri, orig_yaw_rd, orig_yaw_rff, orig_yaw_fltt, orig_yaw_smax, orig_yaw_rLPF, orig_yaw_sp, orig_yaw_accel;
bool orig_bf_feedforward;
// currently being tuned parameter values
float tune_roll_rp, tune_roll_rd, tune_roll_sp, tune_roll_accel;
float tune_pitch_rp, tune_pitch_rd, tune_pitch_sp, tune_pitch_accel;
float tune_yaw_rp, tune_yaw_rLPF, tune_yaw_sp, tune_yaw_accel;
float tune_roll_rff, tune_pitch_rff, tune_yaw_rd, tune_yaw_rff;
uint32_t announce_time;
float lean_angle;
float rotation_rate;
float roll_cd, pitch_cd;
uint32_t last_pilot_override_warning;
struct {
LevelIssue issue{LevelIssue::NONE};
float maximum;
float current;
} level_problem;
// parameters
AP_Int8 axis_bitmask;
AP_Float aggressiveness;
AP_Float min_d;
AP_Float vel_hold_gain;
// copies of object pointers to make code a bit clearer
AC_AttitudeControl *attitude_control;
AC_PosControl *pos_control;
AP_AHRS_View *ahrs_view;
AP_InertialNav *inertial_nav;
AP_Motors *motors;
// Functions added for heli autotune
// Add additional updating gain functions specific to heli
// generic method used by subclasses to update gains for the rate ff up tune type
virtual void updating_rate_ff_up_all(AxisType test_axis)=0;
// generic method used by subclasses to update gains for the rate ff down tune type
virtual void updating_rate_ff_down_all(AxisType test_axis)=0;
// generic method used by subclasses to update gains for the max gain tune type
virtual void updating_max_gains_all(AxisType test_axis)=0;
// Feedforward test used to determine Rate FF gain
void rate_ff_test_init();
void rate_ff_test_run(float max_angle_cds, float target_rate_cds, float dir_sign);
// dwell test used to perform frequency dwells for rate gains
void dwell_test_init(float filt_freq);
void dwell_test_run(uint8_t freq_resp_input, float start_frq, float stop_frq, float &dwell_gain, float &dwell_phase);
// dwell test used to perform frequency dwells for angle gains
void angle_dwell_test_init(float filt_freq);
void angle_dwell_test_run(float start_frq, float stop_frq, float &dwell_gain, float &dwell_phase);
float waveform(float time, float time_record, float waveform_magnitude, float wMin, float wMax);
uint8_t ff_test_phase; // phase of feedforward test
float test_command_filt; // filtered commanded output
float test_rate_filt; // filtered rate output
float command_out;
float test_tgt_rate_filt; // filtered target rate
float filt_target_rate;
bool ff_up_first_iter; //true on first iteration of ff up testing
float test_gain[20]; // gain of output to input
float test_freq[20];
float test_phase[20];
float dwell_start_time_ms;
uint8_t freq_cnt;
uint8_t freq_cnt_max;
float curr_test_freq;
float curr_test_gain;
float curr_test_phase;
Vector3f start_angles;
uint32_t settle_time;
uint32_t phase_out_time;
float waveform_freq_rads; //current frequency for chirp waveform
float start_freq; //start freq for dwell test
float stop_freq; //ending freq for dwell test
float trim_pff_out; // trim output of the PID rate controller for P, I and FF terms
float trim_meas_rate; // trim measured gyro rate
//variables from rate FF test
float trim_command_reading;
float trim_heading;
float rate_request_cds;
float angle_request_cd;
// variables from rate dwell test
Vector3f trim_attitude_cd;
Vector3f filt_attitude_cd;
Vector2f filt_att_fdbk_from_velxy_cd;
float filt_command_reading;
float filt_gyro_reading;
float filt_tgt_rate_reading;
float trim_command;
// variables from angle dwell test
float trim_yaw_tgt_reading;
float trim_yaw_heading_reading;
// Vector2f filt_att_fdbk_from_velxy_cd;
// float filt_command_reading;
// float filt_gyro_reading;
// float filt_tgt_rate_reading;
LowPassFilterFloat command_filt; // filtered command
LowPassFilterFloat target_rate_filt; // filtered target rotation rate in radians/second
// sweep_data tracks the overall characteristics in the response to the frequency sweep
struct sweep_data {
float maxgain_freq;
float maxgain_gain;
float maxgain_phase;
float ph180_freq;
float ph180_gain;
float ph180_phase;
float ph270_freq;
float ph270_gain;
float ph270_phase;
uint8_t progress; // set based on phase of frequency response. 0 - start; 1 - reached 180 deg; 2 - reached 270 deg;
};
sweep_data sweep;
struct max_gain_data {
float freq;
float phase;
float gain;
float max_allowed;
};
max_gain_data max_rate_p;
max_gain_data max_rate_d;
AC_AutoTune_FreqResp freqresp_rate;
AC_AutoTune_FreqResp freqresp_angle;
};