mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-22 00:28:30 -04:00
74f1899aeb
Object avoidance is possible with just one valid distance Boundary is initialised in new init_boundary function to be 100m from vehicle If sectors do not have valid distance measurements, we use the distance from adjacent sectors. This conveniently leads to a concave shaped boundary that keeps the vehicle from travelling into the dataless sector.
443 lines
13 KiB
C++
443 lines
13 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include "AP_Proximity_LightWareSF40C.h"
|
|
#include <AP_SerialManager/AP_SerialManager.h>
|
|
#include <ctype.h>
|
|
#include <stdio.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
/*
|
|
The constructor also initialises the proximity sensor. Note that this
|
|
constructor is not called until detect() returns true, so we
|
|
already know that we should setup the proximity sensor
|
|
*/
|
|
AP_Proximity_LightWareSF40C::AP_Proximity_LightWareSF40C(AP_Proximity &_frontend,
|
|
AP_Proximity::Proximity_State &_state,
|
|
AP_SerialManager &serial_manager) :
|
|
AP_Proximity_Backend(_frontend, _state)
|
|
{
|
|
uart = serial_manager.find_serial(AP_SerialManager::SerialProtocol_Lidar360, 0);
|
|
if (uart != nullptr) {
|
|
uart->begin(serial_manager.find_baudrate(AP_SerialManager::SerialProtocol_Lidar360, 0));
|
|
}
|
|
}
|
|
|
|
// detect if a Lightware proximity sensor is connected by looking for a configured serial port
|
|
bool AP_Proximity_LightWareSF40C::detect(AP_SerialManager &serial_manager)
|
|
{
|
|
return serial_manager.find_serial(AP_SerialManager::SerialProtocol_Lidar360, 0) != nullptr;
|
|
}
|
|
|
|
// update the state of the sensor
|
|
void AP_Proximity_LightWareSF40C::update(void)
|
|
{
|
|
if (uart == nullptr) {
|
|
return;
|
|
}
|
|
|
|
// initialise sensor if necessary
|
|
bool initialised = initialise();
|
|
|
|
// process incoming messages
|
|
check_for_reply();
|
|
|
|
// request new data from sensor
|
|
if (initialised) {
|
|
request_new_data();
|
|
}
|
|
|
|
// check for timeout and set health status
|
|
if ((_last_distance_received_ms == 0) || (AP_HAL::millis() - _last_distance_received_ms > PROXIMITY_SF40C_TIMEOUT_MS)) {
|
|
set_status(AP_Proximity::Proximity_NoData);
|
|
} else {
|
|
set_status(AP_Proximity::Proximity_Good);
|
|
}
|
|
}
|
|
|
|
// get maximum and minimum distances (in meters) of primary sensor
|
|
float AP_Proximity_LightWareSF40C::distance_max() const
|
|
{
|
|
return 100.0f;
|
|
}
|
|
float AP_Proximity_LightWareSF40C::distance_min() const
|
|
{
|
|
return 0.20f;
|
|
}
|
|
|
|
// initialise sensor (returns true if sensor is succesfully initialised)
|
|
bool AP_Proximity_LightWareSF40C::initialise()
|
|
{
|
|
// set motor direction once per second
|
|
if (_motor_direction > 1) {
|
|
if ((_last_request_ms == 0) || AP_HAL::millis() - _last_request_ms > 1000) {
|
|
set_motor_direction();
|
|
}
|
|
}
|
|
// set forward direction once per second
|
|
if (_forward_direction != frontend.get_yaw_correction(state.instance)) {
|
|
if ((_last_request_ms == 0) || AP_HAL::millis() - _last_request_ms > 1000) {
|
|
set_forward_direction();
|
|
}
|
|
}
|
|
// request motors turn on once per second
|
|
if (_motor_speed == 0) {
|
|
if ((_last_request_ms == 0) || AP_HAL::millis() - _last_request_ms > 1000) {
|
|
set_motor_speed(true);
|
|
}
|
|
return false;
|
|
}
|
|
// initialise sectors
|
|
if (!_sector_initialised) {
|
|
init_sectors();
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// initialise sector angles using user defined ignore areas
|
|
void AP_Proximity_LightWareSF40C::init_sectors()
|
|
{
|
|
// use defaults if no ignore areas defined
|
|
uint8_t ignore_area_count = get_ignore_area_count();
|
|
if (ignore_area_count == 0) {
|
|
_sector_initialised = true;
|
|
return;
|
|
}
|
|
|
|
uint8_t sector = 0;
|
|
|
|
for (uint8_t i=0; i<ignore_area_count; i++) {
|
|
|
|
// get ignore area info
|
|
uint16_t ign_area_angle;
|
|
uint8_t ign_area_width;
|
|
if (get_ignore_area(i, ign_area_angle, ign_area_width)) {
|
|
|
|
// calculate how many degrees of space we have between this end of this ignore area and the start of the end
|
|
int16_t start_angle, end_angle;
|
|
get_next_ignore_start_or_end(1, ign_area_angle, start_angle);
|
|
get_next_ignore_start_or_end(0, start_angle, end_angle);
|
|
int16_t degrees_to_fill = wrap_360(end_angle - start_angle);
|
|
|
|
// divide up the area into sectors
|
|
while ((degrees_to_fill > 0) && (sector < PROXIMITY_SECTORS_MAX)) {
|
|
uint16_t sector_size;
|
|
if (degrees_to_fill >= 90) {
|
|
// set sector to maximum of 45 degrees
|
|
sector_size = 45;
|
|
} else if (degrees_to_fill > 45) {
|
|
// use half the remaining area to optimise size of this sector and the next
|
|
sector_size = degrees_to_fill / 2.0f;
|
|
} else {
|
|
// 45 degrees or less are left so put it all into the next sector
|
|
sector_size = degrees_to_fill;
|
|
}
|
|
// record the sector middle and width
|
|
_sector_middle_deg[sector] = wrap_360(start_angle + sector_size / 2.0f);
|
|
_sector_width_deg[sector] = sector_size;
|
|
|
|
// move onto next sector
|
|
start_angle += sector_size;
|
|
sector++;
|
|
degrees_to_fill -= sector_size;
|
|
}
|
|
}
|
|
}
|
|
|
|
// set num sectors
|
|
_num_sectors = sector;
|
|
|
|
// re-initialise boundary because sector locations have changed
|
|
init_boundary();
|
|
|
|
// record success
|
|
_sector_initialised = true;
|
|
}
|
|
|
|
// set speed of rotating motor
|
|
void AP_Proximity_LightWareSF40C::set_motor_speed(bool on_off)
|
|
{
|
|
// exit immediately if no uart
|
|
if (uart == nullptr) {
|
|
return;
|
|
}
|
|
|
|
// set motor update speed
|
|
if (on_off) {
|
|
uart->write("#MBS,3\r\n"); // send request to spin motor at 4.5hz
|
|
} else {
|
|
uart->write("#MBS,0\r\n"); // send request to stop motor
|
|
}
|
|
|
|
// request update motor speed
|
|
uart->write("?MBS\r\n");
|
|
_last_request_type = RequestType_MotorSpeed;
|
|
_last_request_ms = AP_HAL::millis();
|
|
}
|
|
|
|
// set spin direction of motor
|
|
void AP_Proximity_LightWareSF40C::set_motor_direction()
|
|
{
|
|
// exit immediately if no uart
|
|
if (uart == nullptr) {
|
|
return;
|
|
}
|
|
|
|
// set motor update speed
|
|
if (frontend.get_orientation(state.instance) == 0) {
|
|
uart->write("#MBD,0\r\n"); // spin clockwise
|
|
} else {
|
|
uart->write("#MBD,1\r\n"); // spin counter clockwise
|
|
}
|
|
|
|
// request update on motor direction
|
|
uart->write("?MBD\r\n");
|
|
_last_request_type = RequestType_MotorDirection;
|
|
_last_request_ms = AP_HAL::millis();
|
|
}
|
|
|
|
// set forward direction (to allow rotating lidar)
|
|
void AP_Proximity_LightWareSF40C::set_forward_direction()
|
|
{
|
|
// exit immediately if no uart
|
|
if (uart == nullptr) {
|
|
return;
|
|
}
|
|
|
|
// set forward direction
|
|
char request_str[15];
|
|
int16_t yaw_corr = frontend.get_yaw_correction(state.instance);
|
|
snprintf(request_str, sizeof(request_str), "#MBF,%d\r\n", (int)yaw_corr);
|
|
uart->write(request_str);
|
|
|
|
// request update on motor direction
|
|
uart->write("?MBF\r\n");
|
|
_last_request_type = RequestType_ForwardDirection;
|
|
_last_request_ms = AP_HAL::millis();
|
|
}
|
|
|
|
// request new data if required
|
|
void AP_Proximity_LightWareSF40C::request_new_data()
|
|
{
|
|
if (uart == nullptr) {
|
|
return;
|
|
}
|
|
|
|
// after timeout assume no reply will ever come
|
|
uint32_t now = AP_HAL::millis();
|
|
if ((_last_request_type != RequestType_None) && ((now - _last_request_ms) > PROXIMITY_SF40C_TIMEOUT_MS)) {
|
|
_last_request_type = RequestType_None;
|
|
_last_request_ms = 0;
|
|
}
|
|
|
|
// if we are not waiting for a reply, ask for something
|
|
if (_last_request_type == RequestType_None) {
|
|
_request_count++;
|
|
if (_request_count >= 5) {
|
|
send_request_for_health();
|
|
_request_count = 0;
|
|
} else {
|
|
// request new distance measurement
|
|
send_request_for_distance();
|
|
}
|
|
_last_request_ms = now;
|
|
}
|
|
}
|
|
|
|
// send request for sensor health
|
|
void AP_Proximity_LightWareSF40C::send_request_for_health()
|
|
{
|
|
if (uart == nullptr) {
|
|
return;
|
|
}
|
|
|
|
uart->write("?GS\r\n");
|
|
_last_request_type = RequestType_Health;
|
|
_last_request_ms = AP_HAL::millis();
|
|
}
|
|
|
|
// send request for distance from the next sector
|
|
bool AP_Proximity_LightWareSF40C::send_request_for_distance()
|
|
{
|
|
if (uart == nullptr) {
|
|
return false;
|
|
}
|
|
|
|
// increment sector
|
|
_last_sector++;
|
|
if (_last_sector >= _num_sectors) {
|
|
_last_sector = 0;
|
|
}
|
|
|
|
// prepare request
|
|
char request_str[15];
|
|
snprintf(request_str, sizeof(request_str), "?TS,%d,%d\r\n", (int)(_sector_width_deg[_last_sector]), (int)(_sector_middle_deg[_last_sector]));
|
|
uart->write(request_str);
|
|
|
|
|
|
// record request for distance
|
|
_last_request_type = RequestType_DistanceMeasurement;
|
|
_last_request_ms = AP_HAL::millis();
|
|
|
|
return true;
|
|
}
|
|
|
|
// check for replies from sensor, returns true if at least one message was processed
|
|
bool AP_Proximity_LightWareSF40C::check_for_reply()
|
|
{
|
|
if (uart == nullptr) {
|
|
return false;
|
|
}
|
|
|
|
// read any available lines from the lidar
|
|
// if CR (i.e. \r), LF (\n) it means we have received a full packet so send for processing
|
|
// lines starting with # are ignored because this is the echo of a set-motor request which has no reply
|
|
// lines starting with ? are the echo back of our distance request followed by the sensed distance
|
|
// distance data appears after a <space>
|
|
// distance data is comma separated so we put into separate elements (i.e. <space>angle,distance)
|
|
uint16_t count = 0;
|
|
int16_t nbytes = uart->available();
|
|
while (nbytes-- > 0) {
|
|
char c = uart->read();
|
|
// check for end of packet
|
|
if (c == '\r' || c == '\n') {
|
|
if ((element_len[0] > 0)) {
|
|
if (process_reply()) {
|
|
count++;
|
|
}
|
|
}
|
|
// clear buffers after processing
|
|
clear_buffers();
|
|
ignore_reply = false;
|
|
wait_for_space = false;
|
|
|
|
// if message starts with # ignore it
|
|
} else if (c == '#' || ignore_reply) {
|
|
ignore_reply = true;
|
|
|
|
// if waiting for <space>
|
|
} else if (c == '?') {
|
|
wait_for_space = true;
|
|
|
|
} else if (wait_for_space) {
|
|
if (c == ' ') {
|
|
wait_for_space = false;
|
|
}
|
|
|
|
// if comma, move onto filling in 2nd element
|
|
} else if (c == ',') {
|
|
if ((element_num == 0) && (element_len[0] > 0)) {
|
|
element_num++;
|
|
} else {
|
|
// don't support 3rd element so clear buffers
|
|
clear_buffers();
|
|
ignore_reply = true;
|
|
}
|
|
|
|
// if part of a number, add to element buffer
|
|
} else if (isdigit(c) || c == '.' || c == '-') {
|
|
element_buf[element_num][element_len[element_num]] = c;
|
|
element_len[element_num]++;
|
|
if (element_len[element_num] >= sizeof(element_buf[element_num])-1) {
|
|
// too long, discard the line
|
|
clear_buffers();
|
|
ignore_reply = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return (count > 0);
|
|
}
|
|
|
|
// process reply
|
|
bool AP_Proximity_LightWareSF40C::process_reply()
|
|
{
|
|
if (uart == nullptr) {
|
|
return false;
|
|
}
|
|
|
|
bool success = false;
|
|
|
|
switch (_last_request_type) {
|
|
case RequestType_None:
|
|
break;
|
|
|
|
case RequestType_Health:
|
|
// expect result in the form "0xhhhh"
|
|
if (element_len[0] > 0) {
|
|
int result;
|
|
if (sscanf(element_buf[0], "%x", &result) > 0) {
|
|
_sensor_status.value = result;
|
|
success = true;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case RequestType_MotorSpeed:
|
|
_motor_speed = atoi(element_buf[0]);
|
|
success = true;
|
|
break;
|
|
|
|
case RequestType_MotorDirection:
|
|
_motor_direction = atoi(element_buf[0]);
|
|
success = true;
|
|
break;
|
|
|
|
case RequestType_ForwardDirection:
|
|
_forward_direction = atoi(element_buf[0]);
|
|
success = true;
|
|
break;
|
|
|
|
case RequestType_DistanceMeasurement:
|
|
{
|
|
float angle_deg = (float)atof(element_buf[0]);
|
|
float distance_m = (float)atof(element_buf[1]);
|
|
uint8_t sector;
|
|
if (convert_angle_to_sector(angle_deg, sector)) {
|
|
_angle[sector] = angle_deg;
|
|
_distance[sector] = distance_m;
|
|
_distance_valid[sector] = true;
|
|
_last_distance_received_ms = AP_HAL::millis();
|
|
success = true;
|
|
// update boundary used for avoidance
|
|
update_boundary_for_sector(sector);
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// mark request as cleared
|
|
if (success) {
|
|
_last_request_type = RequestType_None;
|
|
}
|
|
|
|
return success;
|
|
}
|
|
|
|
// clear buffers ahead of processing next message
|
|
void AP_Proximity_LightWareSF40C::clear_buffers()
|
|
{
|
|
element_len[0] = 0;
|
|
element_len[1] = 0;
|
|
element_num = 0;
|
|
memset(element_buf, 0, sizeof(element_buf));
|
|
}
|