5
0
mirror of https://github.com/ArduPilot/ardupilot synced 2025-01-06 16:08:28 -04:00
ardupilot/libraries/SITL/SIM_Rover.cpp
Rhys Mainwaring 4354072d34 SITL: SIM_Rover: add simulation for omni3 mecanum rover
Signed-off-by: Rhys Mainwaring <rhys.mainwaring@me.com>
2024-07-23 13:27:04 +10:00

264 lines
8.1 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
rover simulator class
*/
#include "SIM_Rover.h"
#include <string.h>
#include <stdio.h>
#include <AP_Math/AP_Math.h>
namespace SITL {
SimRover::SimRover(const char *frame_str) :
Aircraft(frame_str)
{
skid_steering = strstr(frame_str, "skid") != nullptr;
if (skid_steering) {
printf("SKID Steering Rover Simulation Started\n");
// these are taken from a 6V wild thumper with skid steering,
// with a sabertooth controller
max_accel = 14;
max_speed = 4;
return;
}
vectored_thrust = strstr(frame_str, "vector") != nullptr;
if (vectored_thrust) {
printf("Vectored Thrust Rover Simulation Started\n");
}
omni3 = strstr(frame_str, "omni3mecanum") != nullptr;
if (omni3) {
printf("Omni3 Mecanum Rover Simulation Started\n");
}
lock_step_scheduled = true;
}
/*
return turning circle (diameter) in meters for steering angle proportion in degrees
*/
float SimRover::turn_circle(float steering) const
{
if (fabsf(steering) < 1.0e-6) {
return 0;
}
return turning_circle * sinf(radians(max_wheel_turn)) / sinf(radians(steering*max_wheel_turn));
}
/*
return yaw rate in degrees/second given steering_angle and speed
*/
float SimRover::calc_yaw_rate(float steering, float speed)
{
if (skid_steering) {
return constrain_float(steering * skid_turn_rate, -MAX_YAW_RATE, MAX_YAW_RATE);
}
if (vectored_thrust) {
return constrain_float(steering * vectored_turn_rate_max, -MAX_YAW_RATE, MAX_YAW_RATE);
}
if (fabsf(steering) < 1.0e-6 or fabsf(speed) < 1.0e-6) {
return 0;
}
float d = turn_circle(steering);
float c = M_PI * d;
float t = c / speed;
float rate = constrain_float(360.0f / t, -MAX_YAW_RATE, MAX_YAW_RATE);
return rate;
}
/*
return lateral acceleration in m/s/s
*/
float SimRover::calc_lat_accel(float steering_angle, float speed)
{
float yaw_rate = calc_yaw_rate(steering_angle, speed);
float accel = radians(yaw_rate) * speed;
return accel;
}
/*
update the rover simulation by one time step
*/
void SimRover::update(const struct sitl_input &input)
{
// how much time has passed?
float delta_time = frame_time_us * 1.0e-6f;
// update gyro and accel_body according to frame type
if (omni3) {
update_omni3(input, delta_time);
} else {
update_ackermann_or_skid(input, delta_time);
}
// common to all rovers
// now in earth frame
Vector3f accel_earth = dcm * accel_body;
accel_earth += Vector3f(0, 0, GRAVITY_MSS);
// we are on the ground, so our vertical accel is zero
accel_earth.z = 0;
// work out acceleration as seen by the accelerometers. It sees the kinematic
// acceleration (ie. real movement), plus gravity
accel_body = dcm.transposed() * (accel_earth + Vector3f(0, 0, -GRAVITY_MSS));
// new velocity vector
velocity_ef += accel_earth * delta_time;
// new position vector
position += (velocity_ef * delta_time).todouble();
update_external_payload(input);
// update lat/lon/altitude
update_position();
time_advance();
// update magnetic field
update_mag_field_bf();
}
/*
update the ackermann or skid rover simulation by one time step
*/
void SimRover::update_ackermann_or_skid(const struct sitl_input &input, float delta_time)
{
float steering, throttle;
// if in skid steering mode the steering and throttle values are used for motor1 and motor2
if (skid_steering) {
float motor1 = 2*((input.servos[0]-1000)/1000.0f - 0.5f);
float motor2 = 2*((input.servos[2]-1000)/1000.0f - 0.5f);
steering = motor1 - motor2;
throttle = 0.5*(motor1 + motor2);
} else {
steering = 2*((input.servos[0]-1000)/1000.0f - 0.5f);
throttle = 2*((input.servos[2]-1000)/1000.0f - 0.5f);
// vectored thrust conversion
if (vectored_thrust) {
const float steering_angle_rad = radians(steering * vectored_angle_max);
steering = sinf(steering_angle_rad) * throttle;
throttle *= cosf(steering_angle_rad);
}
}
// speed in m/s in body frame
Vector3f velocity_body = dcm.transposed() * velocity_ef;
// speed along x axis, +ve is forward
float speed = velocity_body.x;
// yaw rate in degrees/s
float yaw_rate = calc_yaw_rate(steering, speed);
// target speed with current throttle
float target_speed = throttle * max_speed;
// linear acceleration in m/s/s - very crude model
float accel = max_accel * (target_speed - speed) / max_speed;
gyro = Vector3f(0,0,radians(yaw_rate));
// update attitude
dcm.rotate(gyro * delta_time);
dcm.normalize();
// accel in body frame due to motor (excluding gravity)
accel_body = Vector3f(accel, 0, 0);
// add in accel due to direction change
accel_body.y += radians(yaw_rate) * speed;
}
/*
update the omni3 rover simulation by one time step
*/
void SimRover::update_omni3(const struct sitl_input &input, float delta_time)
{
// in omni3 mode the first three servos are motor speeds
float motor1 = 2*((input.servos[0]-1000)/1000.0f - 0.5f);
float motor2 = 2*((input.servos[1]-1000)/1000.0f - 0.5f);
float motor3 = 2*((input.servos[2]-1000)/1000.0f - 0.5f);
// use forward kinematics to calculate body frame velocity
Vector3f wheel_ang_vel(
motor1 * omni3_wheel_max_ang_vel,
motor2 * omni3_wheel_max_ang_vel,
motor3 * omni3_wheel_max_ang_vel
);
// derivation of forward kinematics for an Omni3Mecanum rover
// A. Gfrerrer. "Geometry and kinematics of the Mecanum wheel",
// Computer Aided Geometric Design 25 (2008) 784791.
// Retrieved from https://www.geometrie.tugraz.at/gfrerrer/publications/MecanumWheel.pdf.
//
// the frame is equilateral triangle
//
// d[i] = 0.18 m is distance from frame centre to each wheel
// r_w = 0.04725 m is the wheel radius.
// delta = radians(-45) is angle of the roller to the direction of forward rotation
// alpha[i] is the angle the wheel axis is rotated about the body z-axis
// c[i] = cos(alpha[i] + delta)
// s[i] = sin(alpha[i] + delta)
//
// wheel d[i] alpha[i] a_x[i] a_y[i] c[i] s[i]
// 1 0.18 1.04719 0.09 0.15588 0.965925 0.258819
// 2 0.18 3.14159 -0.18 0.0 -0.707106 0.707106
// 3 0.18 5.23598 0.09 -0.15588 -0.258819 -0.965925
//
// k = 1/(r_w * sin(delta)) = -29.930445 is a scale factor
//
// inverse kinematic matrix
// M[i, 0] = k * c[i]
// M[i, 1] = k * s[i]
// M[i, 2] = k * (a_x[i] s[i] - a_y[i] c[i])
//
// forward kinematics matrix: Minv = M^-1
constexpr Matrix3f Minv(
-0.0215149, 0.01575, 0.0057649,
-0.0057649, -0.01575, 0.0215149,
0.0875, 0.0875, 0.0875);
// twist - this is the target linear and angular velocity
Vector3f twist = Minv * wheel_ang_vel;
// speed in m/s in body frame
Vector3f velocity_body = dcm.transposed() * velocity_ef;
// linear acceleration in m/s/s - very crude model
float accel_x = omni3_max_accel * (twist.x - velocity_body.x) / omni3_max_speed;
float accel_y = omni3_max_accel * (twist.y - velocity_body.y) / omni3_max_speed;
gyro = Vector3f(0, 0, twist.z);
// update attitude
dcm.rotate(gyro * delta_time);
dcm.normalize();
// accel in body frame due to motors (excluding gravity)
accel_body = Vector3f(accel_x, accel_y, 0);
}
} // namespace SITL