ardupilot/libraries/AP_Logger/LogFile.cpp

559 lines
18 KiB
C++

#include "AP_Logger_config.h"
#if HAL_LOGGING_ENABLED
#include <stdlib.h>
#include <AP_AHRS/AP_AHRS.h>
#include <AP_Compass/AP_Compass.h>
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include <AP_Param/AP_Param.h>
#include <AP_RSSI/AP_RSSI.h>
#include <RC_Channel/RC_Channel.h>
#include <SRV_Channel/SRV_Channel.h>
#include <AC_PID/AP_PIDInfo.h>
#include "AP_Logger.h"
#include "AP_Logger_File.h"
#include "AP_Logger_MAVLink.h"
#include "LoggerMessageWriter.h"
extern const AP_HAL::HAL& hal;
/*
write a structure format to the log - should be in frontend
*/
void AP_Logger_Backend::Fill_Format(const struct LogStructure *s, struct log_Format &pkt)
{
memset(&pkt, 0, sizeof(pkt));
pkt.head1 = HEAD_BYTE1;
pkt.head2 = HEAD_BYTE2;
pkt.msgid = LOG_FORMAT_MSG;
pkt.type = s->msg_type;
pkt.length = s->msg_len;
strncpy_noterm(pkt.name, s->name, sizeof(pkt.name));
strncpy_noterm(pkt.format, s->format, sizeof(pkt.format));
strncpy_noterm(pkt.labels, s->labels, sizeof(pkt.labels));
}
/*
Pack a LogStructure packet into a structure suitable to go to the logfile:
*/
void AP_Logger_Backend::Fill_Format_Units(const struct LogStructure *s, struct log_Format_Units &pkt)
{
memset(&pkt, 0, sizeof(pkt));
pkt.head1 = HEAD_BYTE1;
pkt.head2 = HEAD_BYTE2;
pkt.msgid = LOG_FORMAT_UNITS_MSG;
pkt.time_us = AP_HAL::micros64();
pkt.format_type = s->msg_type;
strncpy_noterm(pkt.units, s->units, sizeof(pkt.units));
strncpy_noterm(pkt.multipliers, s->multipliers, sizeof(pkt.multipliers));
}
/*
write a structure format to the log
*/
bool AP_Logger_Backend::Write_Format(const struct LogStructure *s)
{
struct log_Format pkt;
Fill_Format(s, pkt);
if (!WriteCriticalBlock(&pkt, sizeof(pkt))) {
return false;
}
_formats_written.set(s->msg_type);
return true;
}
/*
write a unit definition
*/
bool AP_Logger_Backend::Write_Unit(const struct UnitStructure *s)
{
struct log_Unit pkt{
LOG_PACKET_HEADER_INIT(LOG_UNIT_MSG),
time_us : AP_HAL::micros64(),
type : s->ID,
unit : { }
};
strncpy_noterm(pkt.unit, s->unit, sizeof(pkt.unit));
return WriteCriticalBlock(&pkt, sizeof(pkt));
}
/*
write a unit-multiplier definition
*/
bool AP_Logger_Backend::Write_Multiplier(const struct MultiplierStructure *s)
{
const struct log_Format_Multiplier pkt{
LOG_PACKET_HEADER_INIT(LOG_MULT_MSG),
time_us : AP_HAL::micros64(),
type : s->ID,
multiplier : s->multiplier,
};
return WriteCriticalBlock(&pkt, sizeof(pkt));
}
/*
write the units for a format to the log
*/
bool AP_Logger_Backend::Write_Format_Units(const struct LogStructure *s)
{
struct log_Format_Units pkt;
Fill_Format_Units(s, pkt);
return WriteCriticalBlock(&pkt, sizeof(pkt));
}
/*
write a parameter to the log
*/
bool AP_Logger_Backend::Write_Parameter(const char *name, float value, float default_val)
{
struct log_Parameter pkt{
LOG_PACKET_HEADER_INIT(LOG_PARAMETER_MSG),
time_us : AP_HAL::micros64(),
name : {},
value : value,
default_value : default_val
};
strncpy_noterm(pkt.name, name, sizeof(pkt.name));
return WriteCriticalBlock(&pkt, sizeof(pkt));
}
/*
write a parameter to the log
*/
bool AP_Logger_Backend::Write_Parameter(const AP_Param *ap,
const AP_Param::ParamToken &token,
enum ap_var_type type,
float default_val)
{
char name[16];
ap->copy_name_token(token, &name[0], sizeof(name), true);
return Write_Parameter(name, ap->cast_to_float(type), default_val);
}
#if AP_RC_CHANNEL_ENABLED
// Write an RCIN packet
void AP_Logger::Write_RCIN(void)
{
uint16_t values[16] = {};
rc().get_radio_in(values, ARRAY_SIZE(values));
const struct log_RCIN pkt{
LOG_PACKET_HEADER_INIT(LOG_RCIN_MSG),
time_us : AP_HAL::micros64(),
chan1 : values[0],
chan2 : values[1],
chan3 : values[2],
chan4 : values[3],
chan5 : values[4],
chan6 : values[5],
chan7 : values[6],
chan8 : values[7],
chan9 : values[8],
chan10 : values[9],
chan11 : values[10],
chan12 : values[11],
chan13 : values[12],
chan14 : values[13]
};
WriteBlock(&pkt, sizeof(pkt));
uint8_t flags = 0;
if (rc().has_valid_input()) {
flags |= (uint8_t)AP_Logger::RCLoggingFlags::HAS_VALID_INPUT;
}
if (rc().in_rc_failsafe()) {
flags |= (uint8_t)AP_Logger::RCLoggingFlags::IN_RC_FAILSAFE;
}
const struct log_RCI2 pkt2{
LOG_PACKET_HEADER_INIT(LOG_RCI2_MSG),
time_us : AP_HAL::micros64(),
chan15 : values[14],
chan16 : values[15],
override_mask : rc().get_override_mask(),
flags : flags,
};
WriteBlock(&pkt2, sizeof(pkt2));
}
#endif // AP_RC_CHANNEL_ENABLED
// Write an SERVO packet
void AP_Logger::Write_RCOUT(void)
{
const uint32_t enabled_mask = ~SRV_Channels::get_output_channel_mask(SRV_Channel::k_GPIO);
if ((enabled_mask & 0x3FFF) != 0) {
uint16_t channels[14] {};
hal.rcout->read(channels, ARRAY_SIZE(channels));
const struct log_RCOUT pkt{
LOG_PACKET_HEADER_INIT(LOG_RCOUT_MSG),
time_us : AP_HAL::micros64(),
chan1 : channels[0],
chan2 : channels[1],
chan3 : channels[2],
chan4 : channels[3],
chan5 : channels[4],
chan6 : channels[5],
chan7 : channels[6],
chan8 : channels[7],
chan9 : channels[8],
chan10 : channels[9],
chan11 : channels[10],
chan12 : channels[11],
chan13 : channels[12],
chan14 : channels[13]
};
WriteBlock(&pkt, sizeof(pkt));
}
#if NUM_SERVO_CHANNELS >= 15
if ((enabled_mask & 0x3C000) != 0) {
const struct log_RCOUT2 pkt2{
LOG_PACKET_HEADER_INIT(LOG_RCOUT2_MSG),
time_us : AP_HAL::micros64(),
chan15 : hal.rcout->read(14),
chan16 : hal.rcout->read(15),
chan17 : hal.rcout->read(16),
chan18 : hal.rcout->read(17),
};
WriteBlock(&pkt2, sizeof(pkt2));
}
#endif
#if NUM_SERVO_CHANNELS >= 19
if ((enabled_mask & 0xFFFC0000) != 0) {
const struct log_RCOUT pkt3{
LOG_PACKET_HEADER_INIT(LOG_RCOUT3_MSG),
time_us : AP_HAL::micros64(),
chan1 : hal.rcout->read(18),
chan2 : hal.rcout->read(19),
chan3 : hal.rcout->read(20),
chan4 : hal.rcout->read(21),
chan5 : hal.rcout->read(22),
chan6 : hal.rcout->read(23),
chan7 : hal.rcout->read(24),
chan8 : hal.rcout->read(25),
chan9 : hal.rcout->read(26),
chan10 : hal.rcout->read(27),
chan11 : hal.rcout->read(28),
chan12 : hal.rcout->read(29),
chan13 : hal.rcout->read(30),
chan14 : hal.rcout->read(31)
};
WriteBlock(&pkt3, sizeof(pkt3));
}
#endif
}
#if AP_RSSI_ENABLED
// Write an RSSI packet
void AP_Logger::Write_RSSI()
{
AP_RSSI *rssi = AP::rssi();
if (rssi == nullptr) {
return;
}
const struct log_RSSI pkt{
LOG_PACKET_HEADER_INIT(LOG_RSSI_MSG),
time_us : AP_HAL::micros64(),
RXRSSI : rssi->read_receiver_rssi(),
RXLQ : rssi->read_receiver_link_quality()
};
WriteBlock(&pkt, sizeof(pkt));
}
#endif
void AP_Logger::Write_Command(const mavlink_command_int_t &packet,
uint8_t source_system,
uint8_t source_component,
const MAV_RESULT result,
bool was_command_long)
{
const struct log_MAVLink_Command pkt{
LOG_PACKET_HEADER_INIT(LOG_MAVLINK_COMMAND_MSG),
time_us : AP_HAL::micros64(),
target_system : packet.target_system,
target_component: packet.target_component,
source_system : source_system,
source_component: source_component,
frame : packet.frame,
command : packet.command,
param1 : packet.param1,
param2 : packet.param2,
param3 : packet.param3,
param4 : packet.param4,
x : packet.x,
y : packet.y,
z : packet.z,
result : (uint8_t)result,
was_command_long:was_command_long,
};
return WriteBlock(&pkt, sizeof(pkt));
}
bool AP_Logger_Backend::Write_Mission_Cmd(const AP_Mission &mission,
const AP_Mission::Mission_Command &cmd,
LogMessages msgid)
{
mavlink_mission_item_int_t mav_cmd = {};
AP_Mission::mission_cmd_to_mavlink_int(cmd,mav_cmd);
const struct log_CMD pkt{
LOG_PACKET_HEADER_INIT(msgid),
time_us : AP_HAL::micros64(),
command_total : mission.num_commands(),
sequence : mav_cmd.seq,
command : mav_cmd.command,
param1 : mav_cmd.param1,
param2 : mav_cmd.param2,
param3 : mav_cmd.param3,
param4 : mav_cmd.param4,
latitude : mav_cmd.x,
longitude : mav_cmd.y,
altitude : mav_cmd.z,
frame : mav_cmd.frame
};
return WriteBlock(&pkt, sizeof(pkt));
}
#if AP_MISSION_ENABLED
bool AP_Logger_Backend::Write_EntireMission()
{
// kick off asynchronous write:
return _startup_messagewriter->writeentiremission();
}
#endif
// Write a text message to the log
bool AP_Logger_Backend::Write_Message(const char *message)
{
struct log_Message pkt{
LOG_PACKET_HEADER_INIT(LOG_MESSAGE_MSG),
time_us : AP_HAL::micros64(),
msg : {}
};
strncpy_noterm(pkt.msg, message, sizeof(pkt.msg));
return WriteCriticalBlock(&pkt, sizeof(pkt));
}
void AP_Logger::Write_Power(void)
{
#if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
uint8_t safety_and_armed = uint8_t(hal.util->safety_switch_state());
if (hal.util->get_soft_armed()) {
// encode armed state in bit 3
safety_and_armed |= 1U<<2;
}
const uint64_t now = AP_HAL::micros64();
const struct log_POWR powr_pkt{
LOG_PACKET_HEADER_INIT(LOG_POWR_MSG),
time_us : now,
#if HAL_HAVE_BOARD_VOLTAGE
Vcc : hal.analogin->board_voltage(),
#else
Vcc : quiet_nanf(),
#endif
#if HAL_HAVE_SERVO_VOLTAGE
Vservo : hal.analogin->servorail_voltage(),
#else
Vservo : quiet_nanf(),
#endif
flags : hal.analogin->power_status_flags(),
accumulated_flags : hal.analogin->accumulated_power_status_flags(),
safety_and_arm : safety_and_armed,
};
WriteBlock(&powr_pkt, sizeof(powr_pkt));
#if HAL_WITH_MCU_MONITORING
const struct log_MCU mcu_pkt{
LOG_PACKET_HEADER_INIT(LOG_MCU_MSG),
time_us : now,
MCU_temp : hal.analogin->mcu_temperature(),
MCU_voltage : hal.analogin->mcu_voltage(),
MCU_voltage_min : hal.analogin->mcu_voltage_min(),
MCU_voltage_max : hal.analogin->mcu_voltage_max(),
};
WriteBlock(&mcu_pkt, sizeof(mcu_pkt));
#endif
#endif
}
void AP_Logger::Write_Radio(const mavlink_radio_t &packet)
{
const struct log_Radio pkt{
LOG_PACKET_HEADER_INIT(LOG_RADIO_MSG),
time_us : AP_HAL::micros64(),
rssi : packet.rssi,
remrssi : packet.remrssi,
txbuf : packet.txbuf,
noise : packet.noise,
remnoise : packet.remnoise,
rxerrors : packet.rxerrors,
fixed : packet.fixed
};
WriteBlock(&pkt, sizeof(pkt));
}
void AP_Logger::Write_Compass_instance(const uint64_t time_us, const uint8_t mag_instance)
{
const Compass &compass = AP::compass();
const Vector3f &mag_field = compass.get_field(mag_instance);
const Vector3f &mag_offsets = compass.get_offsets(mag_instance);
const Vector3f &mag_motor_offsets = compass.get_motor_offsets(mag_instance);
const struct log_MAG pkt{
LOG_PACKET_HEADER_INIT(LOG_MAG_MSG),
time_us : time_us,
instance : mag_instance,
mag_x : (int16_t)mag_field.x,
mag_y : (int16_t)mag_field.y,
mag_z : (int16_t)mag_field.z,
offset_x : (int16_t)mag_offsets.x,
offset_y : (int16_t)mag_offsets.y,
offset_z : (int16_t)mag_offsets.z,
motor_offset_x : (int16_t)mag_motor_offsets.x,
motor_offset_y : (int16_t)mag_motor_offsets.y,
motor_offset_z : (int16_t)mag_motor_offsets.z,
health : (uint8_t)compass.healthy(mag_instance),
SUS : compass.last_update_usec(mag_instance)
};
WriteBlock(&pkt, sizeof(pkt));
}
// Write a Compass packet
void AP_Logger::Write_Compass()
{
const uint64_t time_us = AP_HAL::micros64();
const Compass &compass = AP::compass();
for (uint8_t i=0; i<compass.get_count(); i++) {
Write_Compass_instance(time_us, i);
}
}
// Write a mode packet.
bool AP_Logger_Backend::Write_Mode(uint8_t mode, const ModeReason reason)
{
static_assert(sizeof(ModeReason) <= sizeof(uint8_t), "Logging expects the ModeReason to fit in 8 bits");
const struct log_Mode pkt{
LOG_PACKET_HEADER_INIT(LOG_MODE_MSG),
time_us : AP_HAL::micros64(),
mode : mode,
mode_num : mode,
mode_reason : static_cast<uint8_t>(reason)
};
return WriteCriticalBlock(&pkt, sizeof(pkt));
}
/*
write servo status from CAN servo
*/
void AP_Logger::Write_ServoStatus(uint64_t time_us, uint8_t id, float position, float force, float speed, uint8_t power_pct,
float pos_cmd, float voltage, float current, float mot_temp, float pcb_temp, uint8_t error)
{
const struct log_CSRV pkt {
LOG_PACKET_HEADER_INIT(LOG_CSRV_MSG),
time_us : time_us,
id : id,
position : position,
force : force,
speed : speed,
power_pct : power_pct,
pos_cmd : pos_cmd,
voltage : voltage,
current : current,
mot_temp : mot_temp,
pcb_temp : pcb_temp,
error : error,
};
WriteBlock(&pkt, sizeof(pkt));
}
// Write a Yaw PID packet
void AP_Logger::Write_PID(uint8_t msg_type, const AP_PIDInfo &info)
{
enum class log_PID_Flags : uint8_t {
LIMIT = 1U<<0, // true if the output is saturated, I term anti windup is active
PD_SUM_LIMIT = 1U<<1, // true if the PD sum limit is active
RESET = 1U<<2, // true if the controller was reset
I_TERM_SET = 1U<<3, // true if the I term has been set externally including reseting to 0
};
uint8_t flags = 0;
if (info.limit) {
flags |= (uint8_t)log_PID_Flags::LIMIT;
}
if (info.PD_limit) {
flags |= (uint8_t)log_PID_Flags::PD_SUM_LIMIT;
}
if (info.reset) {
flags |= (uint8_t)log_PID_Flags::RESET;
}
if (info.I_term_set) {
flags |= (uint8_t)log_PID_Flags::I_TERM_SET;
}
const struct log_PID pkt{
LOG_PACKET_HEADER_INIT(msg_type),
time_us : AP_HAL::micros64(),
target : info.target,
actual : info.actual,
error : info.error,
P : info.P,
I : info.I,
D : info.D,
FF : info.FF,
DFF : info.DFF,
Dmod : info.Dmod,
slew_rate : info.slew_rate,
flags : flags
};
WriteBlock(&pkt, sizeof(pkt));
}
void AP_Logger::Write_SRTL(bool active, uint16_t num_points, uint16_t max_points, uint8_t action, const Vector3f& breadcrumb)
{
const struct log_SRTL pkt_srtl{
LOG_PACKET_HEADER_INIT(LOG_SRTL_MSG),
time_us : AP_HAL::micros64(),
active : active,
num_points : num_points,
max_points : max_points,
action : action,
N : breadcrumb.x,
E : breadcrumb.y,
D : breadcrumb.z
};
WriteBlock(&pkt_srtl, sizeof(pkt_srtl));
}
void AP_Logger::Write_Winch(bool healthy, bool thread_end, bool moving, bool clutch, uint8_t mode, float desired_length, float length, float desired_rate, uint16_t tension, float voltage, int8_t temp)
{
struct log_Winch pkt{
LOG_PACKET_HEADER_INIT(LOG_WINCH_MSG),
time_us : AP_HAL::micros64(),
healthy : healthy,
thread_end : thread_end,
moving : moving,
clutch : clutch,
mode : mode,
desired_length : desired_length,
length : length,
desired_rate : desired_rate,
tension : tension,
voltage : voltage,
temp : temp
};
WriteBlock(&pkt, sizeof(pkt));
}
#endif // HAL_LOGGING_ENABLED