ardupilot/ArduCopter/control_sport.cpp
Randy Mackay 7150dfd5f2 Copter: sport and acro trainer limits based on target attitude
previously the trainer used the vehicle's actual attitude meaning that the target could get far past the limits if there was an attitude error
2017-05-25 11:29:16 +09:00

173 lines
6.7 KiB
C++

#include "Copter.h"
/*
* Init and run calls for sport flight mode
*/
// sport_init - initialise sport controller
bool Copter::sport_init(bool ignore_checks)
{
// initialize vertical speed and acceleration
pos_control->set_speed_z(-g.pilot_velocity_z_max, g.pilot_velocity_z_max);
pos_control->set_accel_z(g.pilot_accel_z);
// initialise position and desired velocity
if (!pos_control->is_active_z()) {
pos_control->set_alt_target_to_current_alt();
pos_control->set_desired_velocity_z(inertial_nav.get_velocity_z());
}
return true;
}
// sport_run - runs the sport controller
// should be called at 100hz or more
void Copter::sport_run()
{
SportModeState sport_state;
float takeoff_climb_rate = 0.0f;
// initialize vertical speed and acceleration
pos_control->set_speed_z(-g.pilot_velocity_z_max, g.pilot_velocity_z_max);
pos_control->set_accel_z(g.pilot_accel_z);
// apply SIMPLE mode transform
update_simple_mode();
// get pilot's desired roll and pitch rates
// calculate rate requests
float target_roll_rate = channel_roll->get_control_in() * g.acro_rp_p;
float target_pitch_rate = channel_pitch->get_control_in() * g.acro_rp_p;
// get attitude targets
const Vector3f att_target = attitude_control->get_att_target_euler_cd();
// Calculate trainer mode earth frame rate command for roll
int32_t roll_angle = wrap_180_cd(att_target.x);
target_roll_rate -= constrain_int32(roll_angle, -ACRO_LEVEL_MAX_ANGLE, ACRO_LEVEL_MAX_ANGLE) * g.acro_balance_roll;
// Calculate trainer mode earth frame rate command for pitch
int32_t pitch_angle = wrap_180_cd(att_target.y);
target_pitch_rate -= constrain_int32(pitch_angle, -ACRO_LEVEL_MAX_ANGLE, ACRO_LEVEL_MAX_ANGLE) * g.acro_balance_pitch;
if (roll_angle > aparm.angle_max){
target_roll_rate -= g.acro_rp_p*(roll_angle-aparm.angle_max);
}else if (roll_angle < -aparm.angle_max) {
target_roll_rate -= g.acro_rp_p*(roll_angle+aparm.angle_max);
}
if (pitch_angle > aparm.angle_max){
target_pitch_rate -= g.acro_rp_p*(pitch_angle-aparm.angle_max);
}else if (pitch_angle < -aparm.angle_max) {
target_pitch_rate -= g.acro_rp_p*(pitch_angle+aparm.angle_max);
}
// get pilot's desired yaw rate
float target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
// get pilot desired climb rate
float target_climb_rate = get_pilot_desired_climb_rate(channel_throttle->get_control_in());
target_climb_rate = constrain_float(target_climb_rate, -g.pilot_velocity_z_max, g.pilot_velocity_z_max);
#if FRAME_CONFIG == HELI_FRAME
// helicopters are held on the ground until rotor speed runup has finished
bool takeoff_triggered = (ap.land_complete && (target_climb_rate > 0.0f) && motors->rotor_runup_complete());
#else
bool takeoff_triggered = ap.land_complete && (target_climb_rate > 0.0f);
#endif
// State Machine Determination
if (!motors->armed() || !motors->get_interlock()) {
sport_state = Sport_MotorStopped;
} else if (takeoff_state.running || takeoff_triggered) {
sport_state = Sport_Takeoff;
} else if (!ap.auto_armed || ap.land_complete) {
sport_state = Sport_Landed;
} else {
sport_state = Sport_Flying;
}
// State Machine
switch (sport_state) {
case Sport_MotorStopped:
motors->set_desired_spool_state(AP_Motors::DESIRED_SHUT_DOWN);
attitude_control->input_euler_rate_roll_pitch_yaw(target_roll_rate, target_pitch_rate, target_yaw_rate);
#if FRAME_CONFIG == HELI_FRAME
// force descent rate and call position controller
pos_control->set_alt_target_from_climb_rate(-abs(g.land_speed), G_Dt, false);
#else
attitude_control->relax_attitude_controllers();
attitude_control->reset_rate_controller_I_terms();
attitude_control->set_yaw_target_to_current_heading();
pos_control->relax_alt_hold_controllers(0.0f); // forces throttle output to go to zero
#endif
pos_control->update_z_controller();
break;
case Sport_Takeoff:
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
// initiate take-off
if (!takeoff_state.running) {
takeoff_timer_start(constrain_float(g.pilot_takeoff_alt,0.0f,1000.0f));
// indicate we are taking off
set_land_complete(false);
// clear i terms
set_throttle_takeoff();
}
// get take-off adjusted pilot and takeoff climb rates
takeoff_get_climb_rates(target_climb_rate, takeoff_climb_rate);
// get avoidance adjusted climb rate
target_climb_rate = get_avoidance_adjusted_climbrate(target_climb_rate);
// call attitude controller
attitude_control->input_euler_rate_roll_pitch_yaw(target_roll_rate, target_pitch_rate, target_yaw_rate);
// call position controller
pos_control->set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
pos_control->add_takeoff_climb_rate(takeoff_climb_rate, G_Dt);
pos_control->update_z_controller();
break;
case Sport_Landed:
// set motors to spin-when-armed if throttle below deadzone, otherwise full range (but motors will only spin at min throttle)
if (target_climb_rate < 0.0f) {
motors->set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
} else {
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
}
attitude_control->reset_rate_controller_I_terms();
attitude_control->set_yaw_target_to_current_heading();
attitude_control->input_euler_rate_roll_pitch_yaw(target_roll_rate, target_pitch_rate, target_yaw_rate);
pos_control->relax_alt_hold_controllers(0.0f); // forces throttle output to go to zero
pos_control->update_z_controller();
break;
case Sport_Flying:
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
// call attitude controller
attitude_control->input_euler_rate_roll_pitch_yaw(target_roll_rate, target_pitch_rate, target_yaw_rate);
// adjust climb rate using rangefinder
if (rangefinder_alt_ok()) {
// if rangefinder is ok, use surface tracking
target_climb_rate = get_surface_tracking_climb_rate(target_climb_rate, pos_control->get_alt_target(), G_Dt);
}
// get avoidance adjusted climb rate
target_climb_rate = get_avoidance_adjusted_climbrate(target_climb_rate);
// call position controller
pos_control->set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
pos_control->update_z_controller();
break;
}
}