ardupilot/libraries/AP_Camera/AP_RunCam.cpp

985 lines
32 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
implementation of RunCam camera protocols
With thanks to betaflight for a great reference
implementation. Several of the functions below are based on
betaflight equivalent functions
RunCam protocol specification can be found at https://support.runcam.com/hc/en-us/articles/360014537794-RunCam-Device-Protocol
*/
#include "AP_RunCam.h"
#if HAL_RUNCAM_ENABLED
#include <AP_Math/AP_Math.h>
#include <GCS_MAVLink/GCS.h>
#include <AP_Logger/AP_Logger.h>
const AP_Param::GroupInfo AP_RunCam::var_info[] = {
// @Param: FEATURES
// @DisplayName: RunCam features available
// @Description: The available features of the attached RunCam device. If 0 then the RunCam device will be queried for the features it supports, otherwise this setting is used.
// @User: Advanced
// @Bitmask: 0:Power Button,1:WiFi Button,2:Change Mode,3:5-Key OSD,4:Settings Access,5:DisplayPort,6:Start Recording,7:Stop Recording
AP_GROUPINFO("FEATURES", 1, AP_RunCam, _features, 0),
// @Param: BT_DELAY
// @DisplayName: RunCam boot delay before allowing updates
// @Description: Time it takes for the RunCam to become fully ready in ms. If this is too short then commands can get out of sync.
// @User: Advanced
AP_GROUPINFO("BT_DELAY", 2, AP_RunCam, _boot_delay_ms, 7000),
// @Param: BTN_DELAY
// @DisplayName: RunCam button delay before allowing further button presses
// @Description: Time it takes for the a RunCam button press to be actived in ms. If this is too short then commands can get out of sync.
// @User: Advanced
AP_GROUPINFO("BTN_DELAY", 3, AP_RunCam, _button_delay_ms, 300),
// @Param: MDE_DELAY
// @DisplayName: RunCam mode delay before allowing further button presses
// @Description: Time it takes for the a RunCam mode button press to be actived in ms. If this is too short then commands can get out of sync.
// @User: Advanced
AP_GROUPINFO("MDE_DELAY", 4, AP_RunCam, _mode_delay_ms, 800),
// @Param: TYPE
// @DisplayName: RunCam device type
// @Description: RunCam deviee type used to determine OSD menu structure and shutter options
// @Values: 0:RunCam Split
// @User: Advanced
AP_GROUPINFO("TYPE", 5, AP_RunCam, _cam_type, 0),
// @Param: CONTROL
// @DisplayName: RunCam control option
// @Description: Specifies the allowed actions required to enter the OSD menu.
// @Bitmask: 0:Stick yaw right, 1:3-way switch, 2: 2-way switch
// @User: Advanced
AP_GROUPINFO("CONTROL", 6, AP_RunCam, _cam_control_option, uint8_t(ControlOption::STICK_YAW_RIGHT) | uint8_t(ControlOption::TWO_POS_SWITCH)),
AP_GROUPEND
};
#define RUNCAM_DEBUG 0
#if RUNCAM_DEBUG
#define debug(fmt, args ...) do { hal.console->printf("RunCam[%d]: " fmt, int(_state), ## args); } while (0)
#else
#define debug(fmt, args ...)
#endif
extern const AP_HAL::HAL& hal;
// singleton instance
AP_RunCam *AP_RunCam::_singleton;
AP_RunCam::Request::Length AP_RunCam::Request::_expected_responses_length[RUNCAM_NUM_EXPECTED_RESPONSES] = {
{ Command::RCDEVICE_PROTOCOL_COMMAND_GET_DEVICE_INFO, 5 },
{ Command::RCDEVICE_PROTOCOL_COMMAND_5KEY_SIMULATION_PRESS, 2 },
{ Command::RCDEVICE_PROTOCOL_COMMAND_5KEY_SIMULATION_RELEASE, 2 },
{ Command::RCDEVICE_PROTOCOL_COMMAND_5KEY_CONNECTION, 3 },
};
// the protocol for Runcam Device definition
static const uint8_t RUNCAM_HEADER = 0xCC;
static const uint8_t RUNCAM_OSD_MENU_DEPTH = 2;
static const uint32_t RUNCAM_INIT_INTERVAL_MS = 500;
static const uint32_t RUNCAM_OSD_UPDATE_INTERVAL_MS = 100; // 10Hz
// menu structures of runcam devices
AP_RunCam::Menu AP_RunCam::_menus[RUNCAM_MAX_DEVICE_TYPES] = {
// these are correct for the runcam split micro v2.4.4, others may vary
// Video, Image, TV-OUT, Micro SD Card, General
{ 6, { 5, 8, 3, 3, 7 }},
};
AP_RunCam::AP_RunCam()
{
AP_Param::setup_object_defaults(this, var_info);
if (_singleton != nullptr) {
AP_HAL::panic("AP_RunCam must be singleton");
}
_singleton = this;
_cam_type = constrain_int16(_cam_type, 0, RUNCAM_MAX_DEVICE_TYPES - 1);
}
// init the runcam device by finding a serial device configured for the RunCam protocol
void AP_RunCam::init()
{
AP_SerialManager *serial_manager = AP_SerialManager::get_singleton();
if (serial_manager) {
uart = serial_manager->find_serial(AP_SerialManager::SerialProtocol_RunCam, 0);
}
if (uart == nullptr) {
return;
}
uart->begin(115200);
// first transition is from initialized to ready
_transition_start_ms = AP_HAL::millis();
_transition_timeout_ms = _boot_delay_ms;
get_device_info();
}
// simulate pressing the camera button
bool AP_RunCam::simulate_camera_button(const ControlOperation operation)
{
if (!uart || _protocol_version != ProtocolVersion::VERSION_1_0) {
return false;
}
debug("press button %d\n", int(operation));
send_packet(Command::RCDEVICE_PROTOCOL_COMMAND_CAMERA_CONTROL, uint8_t(operation));
return true;
}
// start the video
void AP_RunCam::start_recording() {
debug("start recording\n");
_video_recording = true;
_osd_option = OSDOption::NO_OPTION;
}
// stop the video
void AP_RunCam::stop_recording() {
debug("stop recording\n");
_video_recording = false;
_osd_option = OSDOption::NO_OPTION;
}
// enter the OSD menu
void AP_RunCam::enter_osd()
{
debug("enter osd\n");
_osd_option = OSDOption::ENTER;
}
// exit the OSD menu
void AP_RunCam::exit_osd()
{
debug("exit osd\n");
_osd_option = OSDOption::EXIT;
}
// OSD control determined by camera options
void AP_RunCam::osd_option() {
debug("osd option\n");
_osd_option = OSDOption::OPTION;
}
// input update loop
void AP_RunCam::update()
{
if (uart == nullptr) {
return;
}
// process any pending packets
receive();
uint32_t now = AP_HAL::millis();
if ((now - _last_osd_update_ms) > RUNCAM_OSD_UPDATE_INTERVAL_MS) {
update_osd();
_last_osd_update_ms = now;
}
}
// pre_arm_check - returns true if all pre-takeoff checks have completed successfully
bool AP_RunCam::pre_arm_check(char *failure_msg, const uint8_t failure_msg_len) const
{
// if not enabled return true
if (!uart) {
return true;
}
// currently in the OSD menu, do not allow arming
if (_in_menu > 0) {
hal.util->snprintf(failure_msg, failure_msg_len, "In OSD menu");
return false;
}
if (!camera_ready()) {
hal.util->snprintf(failure_msg, failure_msg_len, "Camera not ready");
return false;
}
// if we got this far everything must be ok
return true;
}
// OSD update loop
void AP_RunCam::update_osd()
{
// run a reduced state simulation process when armed
if (AP::arming().is_armed()) {
update_state_machine_armed();
return;
}
update_state_machine_disarmed();
}
// return radio values as LOW, MIDDLE, HIGH
RC_Channel::aux_switch_pos_t AP_RunCam::get_channel_pos(uint8_t rcmapchan) const
{
RC_Channel::aux_switch_pos_t position = RC_Channel::LOW;
const RC_Channel* chan = rc().channel(rcmapchan-1);
if (chan == nullptr || !chan->read_3pos_switch(position)) {
return RC_Channel::LOW;
}
return position;
}
// update the state machine when armed or flying
void AP_RunCam::update_state_machine_armed()
{
const uint32_t now = AP_HAL::millis();
if ((now - _transition_start_ms) < _transition_timeout_ms) {
return;
}
_transition_start_ms = now;
_transition_timeout_ms = 0;
switch (_state) {
case State::READY:
handle_ready(_video_recording ? Event::START_RECORDING : Event::NONE);
break;
case State::VIDEO_RECORDING:
handle_recording(!_video_recording ? Event::STOP_RECORDING : Event::NONE);
break;
case State::INITIALIZING:
case State::INITIALIZED:
case State::ENTERING_MENU:
case State::IN_MENU:
case State::EXITING_MENU:
break;
}
}
// update the state machine when disarmed
void AP_RunCam::update_state_machine_disarmed()
{
const uint32_t now = AP_HAL::millis();
if (_waiting_device_response || (now - _transition_start_ms) < _transition_timeout_ms) {
return;
}
_transition_start_ms = now;
_transition_timeout_ms = 0;
const Event ev = map_rc_input_to_event();
if (ev == Event::BUTTON_RELEASE) {
_button_pressed = false;
}
switch (_state) {
case State::INITIALIZING:
break;
case State::INITIALIZED:
handle_initialized(ev);
break;
case State::READY:
handle_ready(ev);
break;
case State::VIDEO_RECORDING:
handle_recording(ev);
break;
case State::ENTERING_MENU:
handle_in_menu(Event::ENTER_MENU);
break;
case State::IN_MENU:
handle_in_menu(ev);
break;
case State::EXITING_MENU:
handle_in_menu(Event::EXIT_MENU);
break;
}
}
// handle the initialized state
void AP_RunCam::handle_initialized(Event ev)
{
// the camera always starts in recording mode by default
if (!_video_recording) {
simulate_camera_button(ControlOperation::RCDEVICE_PROTOCOL_CHANGE_STOP_RECORDING);
set_mode_change_timeout();
_state = State::READY;
} else {
_state = State::VIDEO_RECORDING;
}
debug("device fully booted after %ums\n", unsigned(AP_HAL::millis()));
}
// handle the ready state
void AP_RunCam::handle_ready(Event ev)
{
switch (ev) {
case Event::ENTER_MENU:
_top_menu_pos = -1;
_sub_menu_pos = 0;
_state = State::ENTERING_MENU;
break;
case Event::START_RECORDING:
simulate_camera_button(ControlOperation::RCDEVICE_PROTOCOL_CHANGE_START_RECORDING);
set_mode_change_timeout();
_state = State::VIDEO_RECORDING;
break;
case Event::NONE:
case Event::EXIT_MENU:
case Event::IN_MENU_ENTER:
case Event::IN_MENU_RIGHT:
case Event::IN_MENU_UP:
case Event::IN_MENU_DOWN:
case Event::IN_MENU_EXIT:
case Event::BUTTON_RELEASE:
case Event::STOP_RECORDING:
break;
}
}
// handle the recording state
void AP_RunCam::handle_recording(Event ev)
{
switch (ev) {
case Event::ENTER_MENU:
simulate_camera_button(ControlOperation::RCDEVICE_PROTOCOL_CHANGE_STOP_RECORDING);
set_mode_change_timeout();
_sub_menu_pos = 0;
_top_menu_pos = -1;
_state = State::ENTERING_MENU;
break;
case Event::STOP_RECORDING:
simulate_camera_button(ControlOperation::RCDEVICE_PROTOCOL_CHANGE_STOP_RECORDING);
set_mode_change_timeout();
_state = State::READY;
break;
case Event::NONE:
case Event::EXIT_MENU:
case Event::IN_MENU_ENTER:
case Event::IN_MENU_RIGHT:
case Event::IN_MENU_UP:
case Event::IN_MENU_DOWN:
case Event::IN_MENU_EXIT:
case Event::BUTTON_RELEASE:
case Event::START_RECORDING:
break;
}
}
// handle the in_menu state
void AP_RunCam::handle_in_menu(Event ev)
{
if (has_feature(Feature::RCDEVICE_PROTOCOL_FEATURE_SIMULATE_5_KEY_OSD_CABLE)) {
handle_5_key_simulation_process(ev);
} else if (has_feature(Feature::RCDEVICE_PROTOCOL_FEATURE_CHANGE_MODE) &&
has_feature(Feature::RCDEVICE_PROTOCOL_FEATURE_SIMULATE_WIFI_BUTTON) &&
has_feature(Feature::RCDEVICE_PROTOCOL_FEATURE_SIMULATE_POWER_BUTTON)) {
// otherwise the simpler 2 key OSD simulation, requires firmware 2.4.4 on the split micro
handle_2_key_simulation_process(ev);
}
}
// map rc input to an event
AP_RunCam::Event AP_RunCam::map_rc_input_to_event() const
{
const RC_Channel::aux_switch_pos_t throttle = get_channel_pos(AP::rcmap()->throttle());
const RC_Channel::aux_switch_pos_t yaw = get_channel_pos(AP::rcmap()->yaw());
const RC_Channel::aux_switch_pos_t roll = get_channel_pos(AP::rcmap()->roll());
const RC_Channel::aux_switch_pos_t pitch = get_channel_pos(AP::rcmap()->pitch());
Event result = Event::NONE;
if (_button_pressed
&& yaw == RC_Channel::MIDDLE && pitch == RC_Channel::MIDDLE && roll == RC_Channel::MIDDLE) {
result = Event::BUTTON_RELEASE;
} else if (throttle == RC_Channel::MIDDLE && yaw == RC_Channel::LOW
&& pitch == RC_Channel::MIDDLE && roll == RC_Channel::MIDDLE
&& _cam_control_option & uint8_t(ControlOption::STICK_YAW_RIGHT)) {
result = Event::EXIT_MENU;
}
if (throttle == RC_Channel::MIDDLE && yaw == RC_Channel::HIGH
&& pitch == RC_Channel::MIDDLE && roll == RC_Channel::MIDDLE
&& _cam_control_option & uint8_t(ControlOption::STICK_YAW_RIGHT)) {
result = Event::ENTER_MENU;
} else if (roll == RC_Channel::LOW) {
result = Event::IN_MENU_EXIT;
} else if (roll == RC_Channel::HIGH) {
result = Event::IN_MENU_ENTER;
} else if (pitch == RC_Channel::HIGH) {
result = Event::IN_MENU_UP;
} else if (pitch == RC_Channel::LOW) {
result = Event::IN_MENU_DOWN;
} else if (_osd_option == OSDOption::ENTER
&& _cam_control_option & uint8_t(ControlOption::TWO_POS_SWITCH)) {
result = Event::ENTER_MENU;
} else if (_osd_option == OSDOption::OPTION
&& _cam_control_option & uint8_t(ControlOption::THREE_POS_SWITCH)) {
result = Event::ENTER_MENU;
} else if (_osd_option == OSDOption::EXIT
&& _cam_control_option & uint8_t(ControlOption::TWO_POS_SWITCH)) {
result = Event::EXIT_MENU;
} else if (_osd_option == OSDOption::NO_OPTION
&& _cam_control_option & uint8_t(ControlOption::THREE_POS_SWITCH)) {
result = Event::EXIT_MENU;
}
return result;
}
// run the 2-key OSD simulation process, this involves using the power and mode (wifi) buttons
// to cycle through options. unfortunately these are one-way requests so we need to use delays
// to make sure that the camera obeys
void AP_RunCam::handle_2_key_simulation_process(Event ev)
{
#if RUNCAM_DEBUG
if (_in_menu > 0 && ev != Event::NONE) {
debug("E:%d,M:%d,V:%d,O:%d\n", int(ev), _in_menu, _video_recording, int(_osd_option));
}
#endif
switch (ev) {
case Event::ENTER_MENU:
if (_in_menu == 0) {
enter_2_key_osd_menu();
}
break;
case Event::EXIT_MENU:
// keep changing mode until we are fully out of the menu
if (_in_menu > 0) {
_in_menu--;
simulate_camera_button(ControlOperation::RCDEVICE_PROTOCOL_CHANGE_MODE);
set_mode_change_timeout();
_state = State::EXITING_MENU;
} else {
exit_2_key_osd_menu();
}
break;
case Event::IN_MENU_ENTER:
simulate_camera_button(ControlOperation::RCDEVICE_PROTOCOL_SIMULATE_WIFI_BTN); // change setting
// in a sub-menu and save-and-exit was selected
if (_in_menu > 1 && _sub_menu_pos == (get_sub_menu_length(_top_menu_pos) - 1)) {
set_button_press_timeout();
_in_menu--;
// in the top-menu and save-and-exit was selected
} else if (_in_menu == 1 && _top_menu_pos == (get_top_menu_length() - 1)) {
set_mode_change_timeout();
_in_menu--;
_state = State::EXITING_MENU;
} else {
set_button_press_timeout();
_in_menu = MIN(_in_menu + 1, RUNCAM_OSD_MENU_DEPTH);
}
break;
case Event::IN_MENU_UP:
case Event::IN_MENU_DOWN:
simulate_camera_button(ControlOperation::RCDEVICE_PROTOCOL_SIMULATE_POWER_BTN); // move to setting
set_button_press_timeout();
if (_in_menu > 1) {
// in a sub-menu, keep track of the selected position
_sub_menu_pos = (_sub_menu_pos + 1) % get_sub_menu_length(_top_menu_pos);
} else {
// in the top-menu, keep track of the selected position
_top_menu_pos = (_top_menu_pos + 1) % get_top_menu_length();
}
break;
case Event::IN_MENU_EXIT:
// if we are in a sub-menu this will move us out, if we are in the root menu this will
// exit causing the state machine to get out of sync. the OSD menu hierachy is consistently
// 2 deep so we can count and be reasonably confident of where we are.
// the only exception is if someone hits save and exit on the root menu - then we are lost.
if (_in_menu > 0) {
_in_menu--;
simulate_camera_button(ControlOperation::RCDEVICE_PROTOCOL_CHANGE_MODE); // move up/out a menu
set_mode_change_timeout();
}
// no longer in the menu so trigger the OSD re-enablement
if (_in_menu == 0) {
_state = State::EXITING_MENU;
}
break;
case Event::NONE:
case Event::IN_MENU_RIGHT:
case Event::BUTTON_RELEASE:
case Event::START_RECORDING:
case Event::STOP_RECORDING:
break;
}
}
// enter the 2 key OSD menu
void AP_RunCam::enter_2_key_osd_menu()
{
// turn off built-in OSD so that the runcam OSD is visible
disable_osd();
simulate_camera_button(ControlOperation::RCDEVICE_PROTOCOL_CHANGE_MODE);
set_mode_change_timeout();
_in_menu = 1;
_state = State::IN_MENU;
}
// exit the 2 key OSD menu
void AP_RunCam::exit_2_key_osd_menu()
{
// turn built-in OSD back on
enable_osd();
if (_video_recording) {
simulate_camera_button(ControlOperation::RCDEVICE_PROTOCOL_CHANGE_START_RECORDING);
set_mode_change_timeout();
_state = State::VIDEO_RECORDING;
}
else {
_state = State::READY;
}
_in_menu = 0;
}
// run the 5-key OSD simulation process
void AP_RunCam::handle_5_key_simulation_process(Event ev)
{
switch (ev) {
case Event::BUTTON_RELEASE:
send_5_key_OSD_cable_simulation_event(ev);
_waiting_device_response = true;
return;
case Event::ENTER_MENU:
if (_in_menu > 0) {
ev = Event::IN_MENU_RIGHT;
} else {
// turn off built-in OSD so that the runcam OSD is visible
disable_osd();
}
break;
case Event::EXIT_MENU:
if (_in_menu > 0) {
// turn built-in OSD back on
enable_osd();
}
break;
case Event::NONE:
case Event::IN_MENU_ENTER:
case Event::IN_MENU_RIGHT:
case Event::IN_MENU_UP:
case Event::IN_MENU_DOWN:
case Event::IN_MENU_EXIT:
case Event::START_RECORDING:
case Event::STOP_RECORDING:
break;
}
if (ev != Event::NONE) {
send_5_key_OSD_cable_simulation_event(ev);
_button_pressed = true;
_waiting_device_response = true;
}
}
// handle a response
void AP_RunCam::handle_5_key_simulation_response(const Request& request)
{
debug("response for command %d result: %d\n", int(request._command), int(request._result));
if (request._result != RequestStatus::SUCCESS) {
simulation_OSD_cable_failed(request);
_waiting_device_response = false;
return;
}
switch (request._command) {
case Command::RCDEVICE_PROTOCOL_COMMAND_5KEY_SIMULATION_RELEASE:
_button_pressed = false;
break;
case Command::RCDEVICE_PROTOCOL_COMMAND_5KEY_CONNECTION:
{
// the high 4 bits is the operationID that we sent
// the low 4 bits is the result code
_button_pressed = true;
const ConnectionOperation operationID = ConnectionOperation(request._param);
const uint8_t errorCode = (request._recv_buf[1] & 0x0F);
switch (operationID) {
case ConnectionOperation::RCDEVICE_PROTOCOL_5KEY_FUNCTION_OPEN:
if (errorCode > 0) {
_in_menu = 1;
}
break;
case ConnectionOperation::RCDEVICE_PROTOCOL_5KEY_FUNCTION_CLOSE:
if (errorCode > 0) {
_in_menu = 0;
}
break;
}
break;
}
case Command::RCDEVICE_PROTOCOL_COMMAND_5KEY_SIMULATION_PRESS:
_button_pressed = true;
break;
case Command::RCDEVICE_PROTOCOL_COMMAND_GET_DEVICE_INFO:
case Command::RCDEVICE_PROTOCOL_COMMAND_CAMERA_CONTROL:
case Command::COMMAND_NONE:
break;
}
_waiting_device_response = false;
}
// process a response from the serial port
void AP_RunCam::receive()
{
if (!uart) {
return;
}
// process any pending request at least once-per cycle, regardless of available bytes
if (!request_pending(AP_HAL::millis())) {
return;
}
uint32_t avail = MIN(uart->available(), (uint32_t)RUNCAM_MAX_PACKET_SIZE);
for (uint32_t i = 0; i < avail; i++) {
if (!request_pending(AP_HAL::millis())) {
return;
}
const uint8_t c = uart->read();
if (_pending_request._recv_response_length == 0) {
// Only start receiving packet when we found a header
if (c != RUNCAM_HEADER) {
continue;
}
}
_pending_request._recv_buf[_pending_request._recv_response_length] = c;
_pending_request._recv_response_length += 1;
// if data received done, trigger callback to parse response data, and update RUNCAM state
if (_pending_request._recv_response_length == _pending_request._expected_response_length) {
uint8_t crc = _pending_request.get_crc();
_pending_request._result = (crc == 0) ? RequestStatus::SUCCESS : RequestStatus::INCORRECT_CRC;
debug("received response %d\n", int(_pending_request._command));
_pending_request.parse_response();
// we no longer have a pending request
_pending_request._result = RequestStatus::NONE;
}
}
}
// every time we send a packet to device and want to get a response
// it's better to clear the rx buffer before the sending the packet
// otherwise useless data in rx buffer will cause the response decoding
// to fail
void AP_RunCam::drain()
{
if (!uart) {
return;
}
uint32_t avail = uart->available();
while (avail-- > 0) {
uart->read();
}
}
// get the device info (firmware version, protocol version and features)
void AP_RunCam::get_device_info()
{
send_request_and_waiting_response(Command::RCDEVICE_PROTOCOL_COMMAND_GET_DEVICE_INFO, 0, RUNCAM_INIT_INTERVAL_MS,
_boot_delay_ms / RUNCAM_INIT_INTERVAL_MS, FUNCTOR_BIND_MEMBER(&AP_RunCam::parse_device_info, void, const Request&));
}
// map a Event to a SimulationOperation
AP_RunCam::SimulationOperation AP_RunCam::map_key_to_protocol_operation(const Event key) const
{
SimulationOperation operation = SimulationOperation::SIMULATION_NONE;
switch (key) {
case Event::IN_MENU_EXIT:
operation = SimulationOperation::RCDEVICE_PROTOCOL_5KEY_SIMULATION_LEFT;
break;
case Event::IN_MENU_UP:
operation = SimulationOperation::RCDEVICE_PROTOCOL_5KEY_SIMULATION_UP;
break;
case Event::IN_MENU_RIGHT:
operation = SimulationOperation::RCDEVICE_PROTOCOL_5KEY_SIMULATION_RIGHT;
break;
case Event::IN_MENU_DOWN:
operation = SimulationOperation::RCDEVICE_PROTOCOL_5KEY_SIMULATION_DOWN;
break;
case Event::IN_MENU_ENTER:
operation = SimulationOperation::RCDEVICE_PROTOCOL_5KEY_SIMULATION_SET;
break;
case Event::BUTTON_RELEASE:
case Event::NONE:
case Event::ENTER_MENU:
case Event::EXIT_MENU:
case Event::STOP_RECORDING:
case Event::START_RECORDING:
break;
}
return operation;
}
// send an event
void AP_RunCam::send_5_key_OSD_cable_simulation_event(const Event key)
{
debug("OSD cable simulation event %d\n", int(key));
switch (key) {
case Event::ENTER_MENU:
open_5_key_OSD_cable_connection(FUNCTOR_BIND_MEMBER(&AP_RunCam::handle_5_key_simulation_response, void, const Request&));
break;
case Event::EXIT_MENU:
close_5_key_OSD_cable_connection(FUNCTOR_BIND_MEMBER(&AP_RunCam::handle_5_key_simulation_response, void, const Request&));
break;
case Event::IN_MENU_UP:
case Event::IN_MENU_RIGHT:
case Event::IN_MENU_DOWN:
case Event::IN_MENU_ENTER:
case Event::IN_MENU_EXIT:
simulate_5_key_OSD_cable_button_press(map_key_to_protocol_operation(key), FUNCTOR_BIND_MEMBER(&AP_RunCam::handle_5_key_simulation_response, void, const Request&));
break;
case Event::BUTTON_RELEASE:
simulate_5_key_OSD_cable_button_release(FUNCTOR_BIND_MEMBER(&AP_RunCam::handle_5_key_simulation_response, void, const Request&));
break;
case Event::STOP_RECORDING:
case Event::START_RECORDING:
case Event::NONE:
break;
}
}
// every time we run the OSD menu simulation it's necessary to open the connection
void AP_RunCam::open_5_key_OSD_cable_connection(parse_func_t parseFunc)
{
send_request_and_waiting_response(Command::RCDEVICE_PROTOCOL_COMMAND_5KEY_CONNECTION,
uint8_t(ConnectionOperation::RCDEVICE_PROTOCOL_5KEY_FUNCTION_OPEN), 400, 2, parseFunc);
}
// every time we exit the OSD menu simulation it's necessary to close the connection
void AP_RunCam::close_5_key_OSD_cable_connection(parse_func_t parseFunc)
{
send_request_and_waiting_response(Command::RCDEVICE_PROTOCOL_COMMAND_5KEY_CONNECTION,
uint8_t(ConnectionOperation::RCDEVICE_PROTOCOL_5KEY_FUNCTION_CLOSE), 400, 2, parseFunc);
}
// simulate button press event of 5 key OSD cable with special button
void AP_RunCam::simulate_5_key_OSD_cable_button_press(const SimulationOperation operation, parse_func_t parseFunc)
{
if (operation == SimulationOperation::SIMULATION_NONE) {
return;
}
send_request_and_waiting_response(Command::RCDEVICE_PROTOCOL_COMMAND_5KEY_SIMULATION_PRESS, uint8_t(operation), 400, 2, parseFunc);
}
// simulate button release event of 5 key OSD cable
void AP_RunCam::simulate_5_key_OSD_cable_button_release(parse_func_t parseFunc)
{
send_request_and_waiting_response(Command::RCDEVICE_PROTOCOL_COMMAND_5KEY_SIMULATION_RELEASE,
uint8_t(SimulationOperation::SIMULATION_NONE), 400, 2, parseFunc);
}
// send a RunCam request and register a response to be processed
void AP_RunCam::send_request_and_waiting_response(Command commandID, uint8_t param,
uint32_t timeout, uint16_t maxRetryTimes, parse_func_t parserFunc)
{
drain();
_pending_request = Request(this, commandID, param, timeout, maxRetryTimes, parserFunc);
debug("sending command: %d, op: %d\n", int(commandID), int(param));
// send packet
send_packet(commandID, param);
}
// send a packet to the serial port
void AP_RunCam::send_packet(Command command, uint8_t param)
{
// is this device open?
if (!uart) {
return;
}
uint8_t buffer[4];
bool have_param = param > 0 || command == Command::RCDEVICE_PROTOCOL_COMMAND_CAMERA_CONTROL;
uint8_t buffer_len = have_param ? 4 : 3;
buffer[0] = RUNCAM_HEADER;
buffer[1] = uint8_t(command);
if (have_param) {
buffer[2] = param;
}
uint8_t crc = 0;
for (uint8_t i = 0; i < buffer_len - 1; i++) {
crc = crc8_dvb_s2(crc, buffer[i]);
}
buffer[buffer_len - 1] = crc;
// send data if possible
uart->write(buffer, buffer_len);
}
// crc functions
uint8_t AP_RunCam::crc8_dvb_s2(uint8_t crc, uint8_t a)
{
crc ^= a;
for (uint8_t i = 0; i < 8; ++i) {
if (crc & 0x80) {
crc = (crc << 1) ^ 0xD5;
} else {
crc = crc << 1;
}
}
return crc;
}
uint8_t AP_RunCam::crc8_high_first(uint8_t *ptr, uint8_t len)
{
uint8_t crc = 0x00;
while (len--) {
crc ^= *ptr++;
for (uint8_t i = 8; i > 0; --i) {
if (crc & 0x80) {
crc = (crc << 1) ^ 0x31;
} else {
crc = (crc << 1);
}
}
}
return (crc);
}
// handle a device info response
void AP_RunCam::parse_device_info(const Request& request)
{
_protocol_version = ProtocolVersion(request._recv_buf[1]);
uint8_t featureLowBits = request._recv_buf[2];
uint8_t featureHighBits = request._recv_buf[3];
_features = (featureHighBits << 8) | featureLowBits;
_state = State::INITIALIZED;
gcs().send_text(MAV_SEVERITY_INFO, "RunCam device initialized, features 0x%04X\n", _features.get());
debug("RunCam: initialized state: video: %d, osd: %d, cam: %d\n", _video_recording, int(_osd_option), int(_cam_control_option));
}
// wait for the RunCam device to be fully ready
bool AP_RunCam::camera_ready() const
{
if (_state != State::INITIALIZING && _state != State::INITIALIZED) {
return true;
}
return false;
}
// error handler for OSD simulation
void AP_RunCam::simulation_OSD_cable_failed(const Request& request)
{
_waiting_device_response = false;
if (request._command == Command::RCDEVICE_PROTOCOL_COMMAND_5KEY_CONNECTION) {
uint8_t operationID = request._param;
if (operationID == uint8_t(ConnectionOperation::RCDEVICE_PROTOCOL_5KEY_FUNCTION_CLOSE)) {
return;
}
}
}
// process all of the pending responses, retrying as necessary
bool AP_RunCam::request_pending(uint32_t now)
{
if (_pending_request._result == RequestStatus::NONE) {
return false;
}
if (_pending_request._request_timestamp_ms != 0 && (now - _pending_request._request_timestamp_ms) < _pending_request._timeout_ms) {
// request still in play
return true;
}
if (_pending_request._max_retry_times > 0) {
// request timed out, so resend
debug("retrying[%d] command 0x%X, op 0x%X\n", int(_pending_request._max_retry_times), int(_pending_request._command), int(_pending_request._param));
_pending_request._device->send_packet(_pending_request._command, _pending_request._param);
_pending_request._recv_response_length = 0;
_pending_request._request_timestamp_ms = now;
_pending_request._max_retry_times -= 1;
return false;
}
debug("timeout command 0x%X, op 0x%X\n", int(_pending_request._command), int(_pending_request._param));
// too many retries, fail the request
_pending_request._result = RequestStatus::TIMEOUT;
_pending_request.parse_response();
_pending_request._result = RequestStatus::NONE;
return false;
}
// constructor for a response structure
AP_RunCam::Request::Request(AP_RunCam* device, Command commandID, uint8_t param,
uint32_t timeout, uint16_t maxRetryTimes, parse_func_t parserFunc)
: _recv_buf(device->_recv_buf),
_command(commandID),
_max_retry_times(maxRetryTimes),
_timeout_ms(timeout),
_device(device),
_param(param),
_parser_func(parserFunc),
_result(RequestStatus::PENDING)
{
_request_timestamp_ms = AP_HAL::millis();
_expected_response_length = get_expected_response_length(commandID);
}
uint8_t AP_RunCam::Request::get_crc() const
{
uint8_t crc = 0;
for (int i = 0; i < _recv_response_length; i++) {
crc = AP_RunCam::crc8_dvb_s2(crc, _recv_buf[i]);
}
return crc;
}
// get the length of a response
uint8_t AP_RunCam::Request::get_expected_response_length(const Command command) const
{
for (uint16_t i = 0; i < RUNCAM_NUM_EXPECTED_RESPONSES; i++) {
if (_expected_responses_length[i].command == command) {
return _expected_responses_length[i].reponse_length;
}
}
return 0;
}
AP_RunCam *AP::runcam() {
return AP_RunCam::get_singleton();
}
#endif // HAL_RUNCAM_ENABLED