ardupilot/ArduPlane/quadplane.h
2016-05-28 17:33:30 +10:00

327 lines
8.6 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <AP_Motors/AP_Motors.h>
#include <AC_PID/AC_PID.h>
#include <AC_AttitudeControl/AC_AttitudeControl_Multi.h> // Attitude control library
#include <AP_InertialNav/AP_InertialNav.h>
#include <AC_AttitudeControl/AC_PosControl.h>
#include <AC_WPNav/AC_WPNav.h>
/*
frame types for quadplane build. Most case be set with
parameters. Those that can't are listed here and chosen with a build
time FRAME_CONFIG parameter
*/
#define MULTICOPTER_FRAME 1
#define TRI_FRAME 2
#ifndef FRAME_CONFIG
# define FRAME_CONFIG MULTICOPTER_FRAME
#endif
#if FRAME_CONFIG == TRI_FRAME
#define AP_MOTORS_CLASS AP_MotorsTri
#else
#define AP_MOTORS_CLASS AP_MotorsMulticopter
#endif
/*
QuadPlane specific functionality
*/
class QuadPlane
{
public:
friend class Plane;
friend class AP_Tuning_Plane;
QuadPlane(AP_AHRS_NavEKF &_ahrs);
// var_info for holding Parameter information
static const struct AP_Param::GroupInfo var_info[];
void control_run(void);
void control_auto(const Location &loc);
bool init_mode(void);
bool setup(void);
void setup_defaults(void);
void vtol_position_controller(void);
void setup_target_position(void);
void takeoff_controller(void);
void waypoint_controller(void);
// update transition handling
void update(void);
// set motor arming
void set_armed(bool armed);
// is VTOL available?
bool available(void) const {
return initialised;
}
// is quadplane assisting?
bool in_assisted_flight(void) const {
return available() && assisted_flight;
}
bool handle_do_vtol_transition(enum MAV_VTOL_STATE state);
bool do_vtol_takeoff(const AP_Mission::Mission_Command& cmd);
bool do_vtol_land(const AP_Mission::Mission_Command& cmd);
bool verify_vtol_takeoff(const AP_Mission::Mission_Command &cmd);
bool verify_vtol_land(void);
bool in_vtol_auto(void);
bool in_vtol_mode(void);
// vtol help for is_flying()
bool is_flying(void);
// return current throttle as a percentate
uint8_t throttle_percentage(void) const {
return last_throttle * 100;
}
// return desired forward throttle percentage
int8_t forward_throttle_pct(void);
float get_weathervane_yaw_rate_cds(void);
// see if we are flying from vtol point of view
bool is_flying_vtol(void);
struct PACKED log_QControl_Tuning {
LOG_PACKET_HEADER;
uint64_t time_us;
float angle_boost;
float throttle_out;
float desired_alt;
float inav_alt;
int32_t baro_alt;
int16_t desired_climb_rate;
int16_t climb_rate;
float dvx;
float dvy;
float dax;
float day;
};
private:
AP_AHRS_NavEKF &ahrs;
AP_Vehicle::MultiCopter aparm;
AP_InertialNav_NavEKF inertial_nav{ahrs};
AC_P p_pos_xy{0.7};
AC_P p_alt_hold{1};
AC_P p_vel_z{5};
AC_PID pid_accel_z{0.3, 1, 0, 800, 10, 0.02};
AC_PI_2D pi_vel_xy{0.7, 0.35, 1000, 5, 0.02};
#if FRAME_CONFIG == MULTICOPTER_FRAME
AP_Int8 frame_class;
#endif
AP_Int8 frame_type;
AP_MOTORS_CLASS *motors;
AC_AttitudeControl_Multi *attitude_control;
AC_PosControl *pos_control;
AC_WPNav *wp_nav;
// maximum vertical velocity the pilot may request
AP_Int16 pilot_velocity_z_max;
// vertical acceleration the pilot may request
AP_Int16 pilot_accel_z;
// update transition handling
void update_transition(void);
// hold hover (for transition)
void hold_hover(float target_climb_rate);
// hold stabilize (for transition)
void hold_stabilize(float throttle_in);
// get pilot desired yaw rate in cd/s
float get_pilot_input_yaw_rate_cds(void);
// get overall desired yaw rate in cd/s
float get_desired_yaw_rate_cds(void);
// get desired climb rate in cm/s
float get_pilot_desired_climb_rate_cms(void);
// initialise throttle_wait when entering mode
void init_throttle_wait();
// main entry points for VTOL flight modes
void init_stabilize(void);
void control_stabilize(void);
void init_hover(void);
void control_hover(void);
void init_loiter(void);
void init_land(void);
void control_loiter(void);
void check_land_complete(void);
void init_qrtl(void);
void control_qrtl(void);
float assist_climb_rate_cms(void);
// calculate desired yaw rate for assistance
float desired_auto_yaw_rate_cds(void);
bool should_relax(void);
void motors_output(void);
void Log_Write_QControl_Tuning();
float landing_descent_rate_cms(float height_above_ground);
// setup correct aux channels for frame class
void setup_default_channels(uint8_t num_motors);
void guided_start(void);
void guided_update(void);
AP_Int16 transition_time_ms;
AP_Int16 rc_speed;
// min and max PWM for throttle
AP_Int16 thr_min_pwm;
AP_Int16 thr_max_pwm;
AP_Int16 throttle_mid;
AP_Int16 throttle_min;
// speed below which quad assistance is given
AP_Float assist_speed;
// maximum yaw rate in degrees/second
AP_Float yaw_rate_max;
// landing speed in cm/s
AP_Int16 land_speed_cms;
// QRTL start altitude, meters
AP_Int16 qrtl_alt;
// alt to switch to QLAND_FINAL
AP_Float land_final_alt;
AP_Int8 enable;
AP_Int8 transition_pitch_max;
// control if a VTOL RTL will be used
AP_Int8 rtl_mode;
// control if a VTOL GUIDED will be used
AP_Int8 guided_mode;
struct {
AP_Float gain;
float integrator;
uint32_t lastt_ms;
int8_t last_pct;
} vel_forward;
struct {
AP_Float gain;
AP_Float min_roll;
uint32_t last_pilot_input_ms;
float last_output;
} weathervane;
bool initialised;
// timer start for transition
uint32_t transition_start_ms;
Location last_auto_target;
// last throttle value when active
float last_throttle;
const float smoothing_gain = 6;
// true if we have reached the airspeed threshold for transition
enum {
TRANSITION_AIRSPEED_WAIT,
TRANSITION_TIMER,
TRANSITION_DONE
} transition_state;
// true when waiting for pilot throttle
bool throttle_wait;
// true when quad is assisting a fixed wing mode
bool assisted_flight;
// time when motors reached lower limit
uint32_t motors_lower_limit_start_ms;
// time we last set the loiter target
uint32_t last_loiter_ms;
enum position_control_state {
QPOS_POSITION1,
QPOS_POSITION2,
QPOS_LAND_DESCEND,
QPOS_LAND_FINAL,
QPOS_LAND_COMPLETE
};
struct {
enum position_control_state state;
float speed_scale;
Vector2f target_velocity;
float max_speed;
Vector3f target;
bool slow_descent:1;
} poscontrol;
enum frame_class {
FRAME_CLASS_QUAD=0,
FRAME_CLASS_HEXA=1,
FRAME_CLASS_OCTA=2,
FRAME_CLASS_OCTAQUAD=3,
FRAME_CLASS_Y6=4,
};
struct {
bool running;
uint32_t start_ms; // system time the motor test began
uint32_t timeout_ms = 0; // test will timeout this many milliseconds after the motor_test_start_ms
uint8_t seq = 0; // motor sequence number of motor being tested
uint8_t throttle_type = 0; // motor throttle type (0=throttle percentage, 1=PWM, 2=pilot throttle channel pass-through)
uint16_t throttle_value = 0; // throttle to be sent to motor, value depends upon it's type
uint8_t motor_count; // number of motors to cycle
} motor_test;
// time of last control log message
uint32_t last_ctrl_log_ms;
// tiltrotor control variables
struct {
AP_Int16 tilt_mask;
AP_Int16 max_rate_dps;
AP_Int8 max_angle_deg;
float current_tilt;
float current_throttle;
bool motors_active:1;
} tilt;
void tiltrotor_slew(float tilt);
void tiltrotor_update(void);
void tilt_compensate(float *thrust, uint8_t num_motors);
public:
void motor_test_output();
uint8_t mavlink_motor_test_start(mavlink_channel_t chan, uint8_t motor_seq, uint8_t throttle_type,
uint16_t throttle_value, float timeout_sec,
uint8_t motor_count);
private:
void motor_test_stop();
};