ardupilot/libraries/AC_AutoTune/AC_AutoTune_Heli.h

136 lines
5.1 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
support for autotune of helicopters
*/
#pragma once
#include "AC_AutoTune.h"
class AC_AutoTune_Heli : public AC_AutoTune
{
public:
// constructor
AC_AutoTune_Heli();
// save gained, called on disarm
void save_tuning_gains() override;
// var_info for holding Parameter information
static const struct AP_Param::GroupInfo var_info[];
protected:
void load_test_gains() override;
// get intra test rate I gain for the specified axis
float get_intra_test_ri(AxisType test_axis) override;
// get tuned rate I gain for the specified axis
float get_tuned_ri(AxisType test_axis) override;
// get tuned yaw rate d gain
float get_tuned_yaw_rd() override { return tune_yaw_rd; }
void test_init() override;
void test_run(AxisType test_axis, const float dir_sign) override;
// update gains for the rate p up tune type
void updating_rate_p_up_all(AxisType test_axis) override;
// update gains for the rate p down tune type
void updating_rate_p_down_all(AxisType test_axis) override {};
// update gains for the rate d up tune type
void updating_rate_d_up_all(AxisType test_axis) override;
// update gains for the rate d down tune type
void updating_rate_d_down_all(AxisType test_axis) override {};
// update gains for the rate ff up tune type
void updating_rate_ff_up_all(AxisType test_axis) override;
// update gains for the rate ff down tune type
void updating_rate_ff_down_all(AxisType test_axis) override {};
// update gains for the angle p up tune type
void updating_angle_p_up_all(AxisType test_axis) override;
// update gains for the angle p down tune type
void updating_angle_p_down_all(AxisType test_axis) override {};
// update gains for the max gain tune type
void updating_max_gains_all(AxisType test_axis) override;
// get minimum rate P (for any axis)
float get_rp_min() const override;
// get minimum angle P (for any axis)
float get_sp_min() const override;
// get minimum rate Yaw filter value
float get_yaw_rate_filt_min() const override;
// reverse direction for twitch test
bool twitch_reverse_direction() override { return positive_direction; }
void Log_AutoTune() override;
void Log_AutoTuneDetails() override;
void Log_AutoTuneSweep() override;
void Log_Write_AutoTune(uint8_t _axis, uint8_t tune_step, float dwell_freq, float meas_gain, float meas_phase, float new_gain_rff, float new_gain_rp, float new_gain_rd, float new_gain_sp, float max_accel);
void Log_Write_AutoTuneDetails(float motor_cmd, float tgt_rate_rads, float rate_rads, float tgt_ang_rad, float ang_rad);
void Log_Write_AutoTuneSweep(float freq, float gain, float phase);
// returns true if rate P gain of zero is acceptable for this vehicle
bool allow_zero_rate_p() override { return true; }
// returns true if max tested accel is used for parameter
bool set_accel_to_max_test_value() override { return false; }
// returns true if pilot is allowed to make inputs during test
bool allow_pilot_rp_input() override
{
if (!use_poshold && tune_type == SP_UP) {
return true;
} else {
return false;
}
}
// send intermittant updates to user on status of tune
void do_gcs_announcements() override;
void set_tune_sequence() override;
AP_Int8 seq_bitmask;
AP_Float min_sweep_freq;
AP_Float max_sweep_freq;
AP_Float max_resp_gain;
private:
// updating_rate_ff_up - adjust FF to ensure the target is reached
// FF is adjusted until rate requested is acheived
void updating_rate_ff_up(float &tune_ff, float rate_target, float meas_rate, float meas_command);
void updating_rate_p_up(float &tune_p, float *freq, float *gain, float *phase, uint8_t &frq_cnt, max_gain_data &max_gain_p);
void updating_rate_d_up(float &tune_d, float *freq, float *gain, float *phase, uint8_t &frq_cnt, max_gain_data &max_gain_d);
void updating_angle_p_up(float &tune_p, float *freq, float *gain, float *phase, uint8_t &frq_cnt);
void updating_angle_p_up_yaw(float &tune_p, float *freq, float *gain, float *phase, uint8_t &frq_cnt);
// updating_max_gains: use dwells at increasing frequency to determine gain at which instability will occur
void updating_max_gains(float *freq, float *gain, float *phase, uint8_t &frq_cnt, max_gain_data &max_gain_p, max_gain_data &max_gain_d, float &tune_p, float &tune_d);
uint8_t method; //0: determine freq, 1: use max gain method, 2: use phase 180 method
};