ardupilot/ArduPlane/test.cpp

276 lines
7.8 KiB
C++

#include "Plane.h"
#if CLI_ENABLED == ENABLED
// Creates a constant array of structs representing menu options
// and stores them in Flash memory, not RAM.
// User enters the string in the console to call the functions on the right.
// See class Menu in AP_Common for implementation details
static const struct Menu::command test_menu_commands[] = {
// Tests below here are for hardware sensors only present
// when real sensors are attached or they are emulated
{"gps", MENU_FUNC(test_gps)},
{"ins", MENU_FUNC(test_ins)},
{"airspeed", MENU_FUNC(test_airspeed)},
{"airpressure", MENU_FUNC(test_pressure)},
{"compass", MENU_FUNC(test_mag)},
{"logging", MENU_FUNC(test_logging)},
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
{"shell", MENU_FUNC(test_shell)},
#endif
};
// A Macro to create the Menu
MENU(test_menu, "test", test_menu_commands);
int8_t Plane::test_mode(uint8_t argc, const Menu::arg *argv)
{
cliSerial->printf("Test Mode\n\n");
test_menu.run();
return 0;
}
void Plane::print_hit_enter()
{
cliSerial->printf("Hit Enter to exit.\n\n");
}
/*
* test the dataflash is working
*/
int8_t Plane::test_logging(uint8_t argc, const Menu::arg *argv)
{
DataFlash.ShowDeviceInfo(cliSerial);
return 0;
}
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
/*
* run a debug shell
*/
int8_t Plane::test_shell(uint8_t argc, const Menu::arg *argv)
{
hal.util->run_debug_shell(cliSerial);
return 0;
}
#endif
//-------------------------------------------------------------------------------------------
// tests in this section are for real sensors or sensors that have been simulated
int8_t Plane::test_gps(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
hal.scheduler->delay(1000);
uint32_t last_message_time_ms = 0;
while(1) {
hal.scheduler->delay(100);
gps.update();
if (gps.last_message_time_ms() != last_message_time_ms) {
last_message_time_ms = gps.last_message_time_ms();
const Location &loc = gps.location();
cliSerial->printf("Lat: %ld, Lon %ld, Alt: %ldm, #sats: %d\n",
(long)loc.lat,
(long)loc.lng,
(long)loc.alt/100,
(int)gps.num_sats());
} else {
cliSerial->printf(".");
}
if(cliSerial->available() > 0) {
return (0);
}
}
}
int8_t Plane::test_ins(uint8_t argc, const Menu::arg *argv)
{
//cliSerial->printf("Calibrating.");
ahrs.init();
ahrs.set_fly_forward(true);
ahrs.set_wind_estimation(true);
ins.init(scheduler.get_loop_rate_hz());
ahrs.reset();
print_hit_enter();
hal.scheduler->delay(1000);
uint8_t counter = 0;
while(1) {
hal.scheduler->delay(20);
if (micros() - perf.fast_loopTimer_us > 19000UL) {
perf.fast_loopTimer_us = micros();
// INS
// ---
ahrs.update();
if(g.compass_enabled) {
counter++;
if(counter == 5) {
compass.read();
counter = 0;
}
}
// We are using the INS
// ---------------------
Vector3f gyros = ins.get_gyro();
Vector3f accels = ins.get_accel();
cliSerial->printf("r:%4d p:%4d y:%3d g=(%5.1f %5.1f %5.1f) a=(%5.1f %5.1f %5.1f)\n",
(int)ahrs.roll_sensor / 100,
(int)ahrs.pitch_sensor / 100,
(uint16_t)ahrs.yaw_sensor / 100,
(double)gyros.x, (double)gyros.y, (double)gyros.z,
(double)accels.x, (double)accels.y, (double)accels.z);
}
if(cliSerial->available() > 0) {
return (0);
}
}
}
int8_t Plane::test_mag(uint8_t argc, const Menu::arg *argv)
{
if (!g.compass_enabled) {
cliSerial->printf("Compass: ");
print_enabled(false);
return (0);
}
if (!compass.init()) {
cliSerial->printf("Compass initialisation failed!\n");
return 0;
}
ahrs.init();
ahrs.set_fly_forward(true);
ahrs.set_wind_estimation(true);
ahrs.set_compass(&compass);
// we need the AHRS initialised for this test
ins.init(scheduler.get_loop_rate_hz());
ahrs.reset();
uint16_t counter = 0;
float heading = 0;
print_hit_enter();
while(1) {
hal.scheduler->delay(20);
if (micros() - perf.fast_loopTimer_us > 19000UL) {
perf.fast_loopTimer_us = micros();
// INS
// ---
ahrs.update();
if(counter % 5 == 0) {
if (compass.read()) {
// Calculate heading
const Matrix3f &m = ahrs.get_rotation_body_to_ned();
heading = compass.calculate_heading(m);
compass.learn_offsets();
}
}
counter++;
if (counter>20) {
if (compass.healthy()) {
const Vector3f &mag_ofs = compass.get_offsets();
const Vector3f &mag = compass.get_field();
cliSerial->printf("Heading: %f, XYZ: %.0f, %.0f, %.0f,\tXYZoff: %6.2f, %6.2f, %6.2f\n",
(double)((wrap_360_cd(ToDeg(heading) * 100)) /100),
(double)mag.x, (double)mag.y, (double)mag.z,
(double)mag_ofs.x, (double)mag_ofs.y, (double)mag_ofs.z);
} else {
cliSerial->printf("compass not healthy\n");
}
counter=0;
}
}
if (cliSerial->available() > 0) {
break;
}
}
// save offsets. This allows you to get sane offset values using
// the CLI before you go flying.
cliSerial->printf("saving offsets\n");
compass.save_offsets();
return (0);
}
//-------------------------------------------------------------------------------------------
// real sensors that have not been simulated yet go here
int8_t Plane::test_airspeed(uint8_t argc, const Menu::arg *argv)
{
if (!airspeed.enabled()) {
cliSerial->printf("airspeed: ");
print_enabled(false);
return (0);
}else{
print_hit_enter();
zero_airspeed(false);
cliSerial->printf("airspeed: ");
print_enabled(true);
while(1) {
hal.scheduler->delay(20);
read_airspeed();
cliSerial->printf("%.1f m/s\n", (double)airspeed.get_airspeed());
if(cliSerial->available() > 0) {
return (0);
}
}
}
}
int8_t Plane::test_pressure(uint8_t argc, const Menu::arg *argv)
{
cliSerial->printf("Uncalibrated relative airpressure\n");
print_hit_enter();
init_barometer(true);
while(1) {
hal.scheduler->delay(100);
barometer.update();
if (!barometer.healthy()) {
cliSerial->printf("not healthy\n");
} else {
cliSerial->printf("Alt: %0.2fm, Raw: %f Temperature: %.1f\n",
(double)barometer.get_altitude(),
(double)barometer.get_pressure(),
(double)barometer.get_temperature());
}
if(cliSerial->available() > 0) {
return (0);
}
}
}
void Plane::print_enabled(bool b)
{
if (b) {
cliSerial->printf("en");
} else {
cliSerial->printf("dis");
}
cliSerial->printf("abled\n");
}
#endif // CLI_ENABLED