ardupilot/libraries/AP_BattMonitor/AP_BattMonitor.h

331 lines
14 KiB
C++

#pragma once
#include "AP_BattMonitor_config.h"
#if AP_BATTERY_ENABLED
#include <AP_Common/AP_Common.h>
#include <AP_Param/AP_Param.h>
#include <AP_Math/AP_Math.h>
#include <AP_TemperatureSensor/AP_TemperatureSensor_config.h>
#include <GCS_MAVLink/GCS_MAVLink.h>
#include "AP_BattMonitor_Params.h"
// maximum number of battery monitors
#ifndef AP_BATT_MONITOR_MAX_INSTANCES
#define AP_BATT_MONITOR_MAX_INSTANCES 9
#endif
// first monitor is always the primary monitor
#define AP_BATT_PRIMARY_INSTANCE 0
#define AP_BATT_SERIAL_NUMBER_DEFAULT -1
#define AP_BATT_MONITOR_TIMEOUT 5000
#define AP_BATT_MONITOR_RES_EST_TC_1 0.5f
#define AP_BATT_MONITOR_RES_EST_TC_2 0.1f
#if BOARD_FLASH_SIZE > 1024
#define AP_BATT_MONITOR_CELLS_MAX 14
#else
#define AP_BATT_MONITOR_CELLS_MAX 12
#endif
// declare backend class
class AP_BattMonitor_Backend;
class AP_BattMonitor_Analog;
class AP_BattMonitor_SMBus;
class AP_BattMonitor_SMBus_Solo;
class AP_BattMonitor_SMBus_Generic;
class AP_BattMonitor_SMBus_Maxell;
class AP_BattMonitor_SMBus_Rotoye;
class AP_BattMonitor_DroneCAN;
class AP_BattMonitor_Generator;
class AP_BattMonitor_INA2XX;
class AP_BattMonitor_INA239;
class AP_BattMonitor_LTC2946;
class AP_BattMonitor_Torqeedo;
class AP_BattMonitor_FuelLevel_Analog;
class AP_BattMonitor_EFI;
class AP_BattMonitor_Scripting;
class AP_BattMonitor
{
friend class AP_BattMonitor_Backend;
friend class AP_BattMonitor_Analog;
friend class AP_BattMonitor_SMBus;
friend class AP_BattMonitor_SMBus_Solo;
friend class AP_BattMonitor_SMBus_Generic;
friend class AP_BattMonitor_SMBus_Maxell;
friend class AP_BattMonitor_SMBus_Rotoye;
friend class AP_BattMonitor_DroneCAN;
friend class AP_BattMonitor_Sum;
friend class AP_BattMonitor_FuelFlow;
friend class AP_BattMonitor_FuelLevel_PWM;
friend class AP_BattMonitor_Generator;
friend class AP_BattMonitor_EFI;
friend class AP_BattMonitor_INA2XX;
friend class AP_BattMonitor_INA239;
friend class AP_BattMonitor_LTC2946;
friend class AP_BattMonitor_AD7091R5;
friend class AP_BattMonitor_Torqeedo;
friend class AP_BattMonitor_FuelLevel_Analog;
friend class AP_BattMonitor_Synthetic_Current;
friend class AP_BattMonitor_Scripting;
public:
// battery failsafes must be defined in levels of severity so that vehicles wont fall backwards
enum class Failsafe : uint8_t {
None = 0,
Unhealthy,
Low,
Critical
};
// Battery monitor driver types
enum class Type {
NONE = 0,
ANALOG_VOLTAGE_ONLY = 3,
ANALOG_VOLTAGE_AND_CURRENT = 4,
SOLO = 5,
BEBOP = 6,
SMBus_Generic = 7,
UAVCAN_BatteryInfo = 8,
BLHeliESC = 9,
Sum = 10,
FuelFlow = 11,
FuelLevel_PWM = 12,
SUI3 = 13,
SUI6 = 14,
NeoDesign = 15,
MAXELL = 16,
GENERATOR_ELEC = 17,
GENERATOR_FUEL = 18,
Rotoye = 19,
// 20 was MPPT_PacketDigital
INA2XX = 21,
LTC2946 = 22,
Torqeedo = 23,
FuelLevel_Analog = 24,
Analog_Volt_Synthetic_Current = 25,
INA239_SPI = 26,
EFI = 27,
AD7091R5 = 28,
Scripting = 29,
};
FUNCTOR_TYPEDEF(battery_failsafe_handler_fn_t, void, const char *, const int8_t);
AP_BattMonitor(uint32_t log_battery_bit, battery_failsafe_handler_fn_t battery_failsafe_handler_fn, const int8_t *failsafe_priorities);
/* Do not allow copies */
CLASS_NO_COPY(AP_BattMonitor);
static AP_BattMonitor *get_singleton() {
return _singleton;
}
// cell voltages in millivolts
struct cells {
uint16_t cells[AP_BATT_MONITOR_CELLS_MAX];
};
// The BattMonitor_State structure is filled in by the backend driver
struct BattMonitor_State {
cells cell_voltages; // battery cell voltages in millivolts, 10 cells matches the MAVLink spec
float voltage; // voltage in volts
float current_amps; // current in amperes
float consumed_mah; // total current draw in milliamp hours since start-up
float consumed_wh; // total energy consumed in Wh since start-up
uint32_t last_time_micros; // time when voltage and current was last read in microseconds
uint32_t low_voltage_start_ms; // time when voltage dropped below the minimum in milliseconds
uint32_t critical_voltage_start_ms; // critical voltage failsafe start timer in milliseconds
float temperature; // battery temperature in degrees Celsius
#if AP_TEMPERATURE_SENSOR_ENABLED
bool temperature_external_use;
float temperature_external; // battery temperature set by an external source in degrees Celsius
#endif
uint32_t temperature_time; // timestamp of the last received temperature message
float voltage_resting_estimate; // voltage with sag removed based on current and resistance estimate in Volt
float resistance; // resistance, in Ohms, calculated by comparing resting voltage vs in flight voltage
Failsafe failsafe; // stage failsafe the battery is in
bool healthy; // battery monitor is communicating correctly
uint32_t last_healthy_ms; // Time when monitor was last healthy
bool is_powering_off; // true when power button commands power off
bool powerOffNotified; // only send powering off notification once
uint32_t time_remaining; // remaining battery time
bool has_time_remaining; // time_remaining is only valid if this is true
uint8_t state_of_health_pct; // state of health (SOH) in percent
bool has_state_of_health_pct; // state_of_health_pct is only valid if this is true
uint8_t instance; // instance number of this backend
Type type; // allocated instance type
const struct AP_Param::GroupInfo *var_info;
};
static const struct AP_Param::GroupInfo *backend_var_info[AP_BATT_MONITOR_MAX_INSTANCES];
// Return the number of battery monitor instances
uint8_t num_instances(void) const { return _num_instances; }
// detect and initialise any available battery monitors
void init();
/// Read the battery voltage and current for all batteries. Should be called at 10hz
void read();
// healthy - returns true if monitor is functioning
bool healthy(uint8_t instance) const;
// return true if all configured battery monitors are healthy
bool healthy() const;
/// voltage - returns battery voltage in volts
float voltage(uint8_t instance) const;
float voltage() const { return voltage(AP_BATT_PRIMARY_INSTANCE); }
// voltage for a GCS, may be resistance compensated
float gcs_voltage(uint8_t instance) const;
float gcs_voltage(void) const { return gcs_voltage(AP_BATT_PRIMARY_INSTANCE); }
/// get voltage with sag removed (based on battery current draw and resistance)
/// this will always be greater than or equal to the raw voltage
float voltage_resting_estimate(uint8_t instance) const;
float voltage_resting_estimate() const { return voltage_resting_estimate(AP_BATT_PRIMARY_INSTANCE); }
/// current_amps - returns the instantaneous current draw in amperes
bool current_amps(float &current, const uint8_t instance = AP_BATT_PRIMARY_INSTANCE) const WARN_IF_UNUSED;
/// consumed_mah - returns total current drawn since start-up in milliampere.hours
bool consumed_mah(float &mah, const uint8_t instance = AP_BATT_PRIMARY_INSTANCE) const WARN_IF_UNUSED;
/// consumed_wh - returns total energy drawn since start-up in watt.hours
bool consumed_wh(float&wh, const uint8_t instance = AP_BATT_PRIMARY_INSTANCE) const WARN_IF_UNUSED;
/// capacity_remaining_pct - returns true if the percentage is valid and writes to percentage argument
virtual bool capacity_remaining_pct(uint8_t &percentage, uint8_t instance) const WARN_IF_UNUSED;
bool capacity_remaining_pct(uint8_t &percentage) const WARN_IF_UNUSED { return capacity_remaining_pct(percentage, AP_BATT_PRIMARY_INSTANCE); }
/// time_remaining - returns remaining battery time
bool time_remaining(uint32_t &seconds, const uint8_t instance = AP_BATT_PRIMARY_INSTANCE) const WARN_IF_UNUSED;
/// pack_capacity_mah - returns the capacity of the battery pack in mAh when the pack is full
int32_t pack_capacity_mah(uint8_t instance) const;
int32_t pack_capacity_mah() const { return pack_capacity_mah(AP_BATT_PRIMARY_INSTANCE); }
/// returns true if a battery failsafe has ever been triggered
bool has_failsafed(void) const { return _has_triggered_failsafe; };
/// returns the highest failsafe action that has been triggered
int8_t get_highest_failsafe_priority(void) const { return _highest_failsafe_priority; };
/// configured_type - returns battery monitor type as configured in parameters
enum Type configured_type(uint8_t instance) const {
return (Type)_params[instance]._type.get();
}
/// allocated_type - returns battery monitor type as allocated
enum Type allocated_type(uint8_t instance) const {
return state[instance].type;
}
/// get_serial_number - returns battery serial number
int32_t get_serial_number() const { return get_serial_number(AP_BATT_PRIMARY_INSTANCE); }
int32_t get_serial_number(uint8_t instance) const {
return _params[instance]._serial_number;
}
/// true when (voltage * current) > watt_max
bool overpower_detected() const;
bool overpower_detected(uint8_t instance) const;
// cell voltages in millivolts
bool has_cell_voltages() const { return has_cell_voltages(AP_BATT_PRIMARY_INSTANCE); }
bool has_cell_voltages(const uint8_t instance) const;
const cells &get_cell_voltages() const { return get_cell_voltages(AP_BATT_PRIMARY_INSTANCE); }
const cells &get_cell_voltages(const uint8_t instance) const;
// get once cell voltage (for scripting)
bool get_cell_voltage(uint8_t instance, uint8_t cell, float &voltage) const;
// temperature
bool get_temperature(float &temperature) const { return get_temperature(temperature, AP_BATT_PRIMARY_INSTANCE); }
bool get_temperature(float &temperature, const uint8_t instance) const;
#if AP_TEMPERATURE_SENSOR_ENABLED
bool set_temperature(const float temperature, const uint8_t instance);
bool set_temperature_by_serial_number(const float temperature, const int32_t serial_number);
#endif
// MPPT Control (Solar panels)
void MPPT_set_powered_state_to_all(const bool power_on);
void MPPT_set_powered_state(const uint8_t instance, const bool power_on);
bool option_is_set(uint8_t instance, AP_BattMonitor_Params::Options option) const;
// cycle count
bool get_cycle_count(uint8_t instance, uint16_t &cycles) const;
// get battery resistance estimate in ohms
float get_resistance() const { return get_resistance(AP_BATT_PRIMARY_INSTANCE); }
float get_resistance(uint8_t instance) const { return state[instance].resistance; }
// returns false if we fail arming checks, in which case the buffer will be populated with a failure message
bool arming_checks(size_t buflen, char *buffer) const;
// sends powering off mavlink broadcasts and sets notify flag
void checkPoweringOff(void);
// reset battery remaining percentage
bool reset_remaining_mask(uint16_t battery_mask, float percentage);
bool reset_remaining(uint8_t instance, float percentage) { return reset_remaining_mask(1U<<instance, percentage);}
// Returns mavlink charge state
MAV_BATTERY_CHARGE_STATE get_mavlink_charge_state(const uint8_t instance) const;
// Returns mavlink fault state
uint32_t get_mavlink_fault_bitmask(const uint8_t instance) const;
// return true if state of health (as a percentage) can be provided and fills in soh_pct argument
bool get_state_of_health_pct(uint8_t instance, uint8_t &soh_pct) const;
static const struct AP_Param::GroupInfo var_info[];
#if AP_BATTERY_SCRIPTING_ENABLED
bool handle_scripting(uint8_t idx, const struct BattMonitorScript_State &state);
#endif
protected:
/// parameters
AP_BattMonitor_Params _params[AP_BATT_MONITOR_MAX_INSTANCES];
private:
static AP_BattMonitor *_singleton;
BattMonitor_State state[AP_BATT_MONITOR_MAX_INSTANCES];
AP_BattMonitor_Backend *drivers[AP_BATT_MONITOR_MAX_INSTANCES];
uint32_t _log_battery_bit;
uint8_t _num_instances; /// number of monitors
void convert_dynamic_param_groups(uint8_t instance);
/// returns the failsafe state of the battery
Failsafe check_failsafe(const uint8_t instance);
void check_failsafes(void); // checks all batteries failsafes
battery_failsafe_handler_fn_t _battery_failsafe_handler_fn;
const int8_t *_failsafe_priorities; // array of failsafe priorities, sorted highest to lowest priority, -1 indicates no more entries
int8_t _highest_failsafe_priority; // highest selected failsafe action level (used to restrict what actions we move into)
bool _has_triggered_failsafe; // true after a battery failsafe has been triggered for the first time
};
namespace AP {
AP_BattMonitor &battery();
};
#endif // AP_BATTERY_ENABLED