ardupilot/libraries/SITL/SIM_Morse.cpp
2018-12-04 09:44:50 +11:00

410 lines
12 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
simulator connector for morse simulator
*/
#include "SIM_Morse.h"
#include <arpa/inet.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdarg.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <AP_HAL/AP_HAL.h>
#include <DataFlash/DataFlash.h>
#include "pthread.h"
extern const AP_HAL::HAL& hal;
using namespace SITL;
static const struct {
const char *name;
float value;
bool save;
} sim_defaults[] = {
{ "AHRS_EKF_TYPE", 10 },
{ "INS_GYR_CAL", 0 },
{ "RC1_MIN", 1000, true },
{ "RC1_MAX", 2000, true },
{ "RC2_MIN", 1000, true },
{ "RC2_MAX", 2000, true },
{ "RC3_MIN", 1000, true },
{ "RC3_MAX", 2000, true },
{ "RC4_MIN", 1000, true },
{ "RC4_MAX", 2000, true },
{ "RC2_REVERSED", 1 }, // interlink has reversed rc2
{ "SERVO1_MIN", 1000 },
{ "SERVO1_MAX", 2000 },
{ "SERVO2_MIN", 1000 },
{ "SERVO2_MAX", 2000 },
{ "SERVO3_MIN", 1000 },
{ "SERVO3_MAX", 2000 },
{ "SERVO4_MIN", 1000 },
{ "SERVO4_MAX", 2000 },
{ "SERVO5_MIN", 1000 },
{ "SERVO5_MAX", 2000 },
{ "SERVO6_MIN", 1000 },
{ "SERVO6_MAX", 2000 },
{ "SERVO6_MIN", 1000 },
{ "SERVO6_MAX", 2000 },
{ "INS_ACC2OFFS_X", 0.001 },
{ "INS_ACC2OFFS_Y", 0.001 },
{ "INS_ACC2OFFS_Z", 0.001 },
{ "INS_ACC2SCAL_X", 1.001 },
{ "INS_ACC2SCAL_Y", 1.001 },
{ "INS_ACC2SCAL_Z", 1.001 },
{ "INS_ACCOFFS_X", 0.001 },
{ "INS_ACCOFFS_Y", 0.001 },
{ "INS_ACCOFFS_Z", 0.001 },
{ "INS_ACCSCAL_X", 1.001 },
{ "INS_ACCSCAL_Y", 1.001 },
{ "INS_ACCSCAL_Z", 1.001 },
};
Morse::Morse(const char *home_str, const char *frame_str) :
Aircraft(home_str, frame_str)
{
const char *colon = strchr(frame_str, ':');
if (colon) {
morse_ip = colon+1;
}
if (strstr(frame_str, "-rover")) {
output_type = OUTPUT_ROVER;
} else if (strstr(frame_str, "-quad")) {
output_type = OUTPUT_QUAD;
} else {
// default to rover
output_type = OUTPUT_ROVER;
}
for (uint8_t i=0; i<ARRAY_SIZE(sim_defaults); i++) {
AP_Param::set_default_by_name(sim_defaults[i].name, sim_defaults[i].value);
if (sim_defaults[i].save) {
enum ap_var_type ptype;
AP_Param *p = AP_Param::find(sim_defaults[i].name, &ptype);
if (!p->configured()) {
p->save();
}
}
}
printf("Started Morse backend\n");
}
/*
very simple JSON parser for sensor data
called with pointer to one row of sensor data, nul terminated
This parser does not do any syntax checking, and is not at all
general purpose
*/
bool Morse::parse_sensors(const char *json)
{
//printf("%s\n", json);
for (uint16_t i=0; i<ARRAY_SIZE(keytable); i++) {
struct keytable &key = keytable[i];
/* look for section header */
const char *p = strstr(json, key.section);
if (!p) {
printf("Failed to find section %s\n", key.section);
return false;
}
p += strlen(key.section)+1;
// find key inside section
p = strstr(p, key.key);
if (!p) {
printf("Failed to find key %s/%s\n", key.section, key.key);
return false;
}
p += strlen(key.key)+2;
if (key.is_vector3) {
p += 2;
if (sscanf(p, "%lf, %lf, %lf", &key.ptr[0], &key.ptr[1], &key.ptr[2]) != 3) {
printf("Failed to parse vector3 for %s/%s\n", key.section, key.key);
return false;
}
//printf("%s.%s [%f, %f, %f]\n", key.section, key.key, key.ptr[0], key.ptr[1], key.ptr[2]);
} else {
key.ptr[0] = atof(p);
//printf("%s.%s %f\n", key.section, key.key, *key.ptr);
}
}
socket_frame_counter++;
return true;
}
/*
connect to the required sockets
*/
bool Morse::connect_sockets(void)
{
if (!sensors_sock_connected) {
if (!sensors_sock.connect(morse_ip, morse_sensors_port)) {
if (connect_counter++ == 1000) {
printf("Waiting to connect to sensors control on %s:%u\n",
morse_ip, morse_sensors_port);
connect_counter = 0;
}
return false;
}
printf("Sensors connected\n");
sensors_sock_connected = true;
}
if (!control_sock_connected) {
if (!control_sock.connect(morse_ip, morse_control_port)) {
if (connect_counter++ == 1000) {
printf("Waiting to connect to control control on %s:%u\n",
morse_ip, morse_control_port);
connect_counter = 0;
}
return false;
}
control_sock_connected = true;
printf("Control connected\n");
}
return true;
}
/*
get any new data from the sensors socket
*/
bool Morse::sensors_receive(void)
{
ssize_t ret = sensors_sock.recv(&sensor_buffer[sensor_buffer_len], sizeof(sensor_buffer)-sensor_buffer_len, 0);
if (ret <= 0) {
return false;
}
// convert '\n' into nul
while (uint8_t *p = (uint8_t *)memchr(&sensor_buffer[sensor_buffer_len], '\n', ret)) {
*p = 0;
}
sensor_buffer_len += ret;
const uint8_t *p2 = (const uint8_t *)memrchr(sensor_buffer, 0, sensor_buffer_len);
if (p2 == nullptr || p2 == sensor_buffer) {
return false;
}
const uint8_t *p1 = (const uint8_t *)memrchr(sensor_buffer, 0, p2 - sensor_buffer);
if (p1 == nullptr) {
return false;
}
bool parse_ok = parse_sensors((const char *)(p1+1));
memmove(sensor_buffer, p2, sensor_buffer_len - (p2 - sensor_buffer));
sensor_buffer_len = sensor_buffer_len - (p2 - sensor_buffer);
return parse_ok;
}
/*
output control command assuming skid-steering rover
*/
void Morse::output_rover(const struct sitl_input &input)
{
float motor1 = 2*((input.servos[0]-1000)/1000.0f - 0.5f);
float motor2 = 2*((input.servos[2]-1000)/1000.0f - 0.5f);
const float steer_rate_max_dps = 60;
const float max_speed = 2;
const float steering_rps = (motor1 - motor2) * radians(steer_rate_max_dps);
const float speed_ms = 0.5*(motor1 + motor2) * max_speed;
// construct a JSON packet for v and w
char buf[60];
snprintf(buf, sizeof(buf)-1, "{\"v\": %.3f, \"w\": %.2f}\n",
speed_ms, -steering_rps);
buf[sizeof(buf)-1] = 0;
control_sock.send(buf, strlen(buf));
}
/*
output control command assuming a 4 channel quad
*/
void Morse::output_quad(const struct sitl_input &input)
{
const float max_thrust = 1500;
float motors[4];
for (uint8_t i=0; i<4; i++) {
motors[i] = constrain_float(((input.servos[i]-1000)/1000.0f) * max_thrust, 0, max_thrust);
}
const float &m_right = motors[0];
const float &m_left = motors[1];
const float &m_front = motors[2];
const float &m_back = motors[3];
// quad format in Morse is:
// m1: back
// m2: right
// m3: front
// m4: left
// construct a JSON packet for motors
char buf[60];
snprintf(buf, sizeof(buf)-1, "{\"engines\": [%.3f, %.3f, %.3f, %.3f]}\n",
m_back, m_right, m_front, m_left);
buf[sizeof(buf)-1] = 0;
control_sock.send(buf, strlen(buf));
}
/*
update the Morse simulation by one time step
*/
void Morse::update(const struct sitl_input &input)
{
if (!connect_sockets()) {
return;
}
last_state = state;
if (sensors_receive()) {
// update average frame time used for extrapolation
double dt = constrain_float(state.timestamp - last_state.timestamp, 0.001, 1.0/50);
if (average_frame_time_s < 1.0e-6) {
average_frame_time_s = dt;
}
average_frame_time_s = average_frame_time_s * 0.98 + dt * 0.02;
}
double dt_s = state.timestamp - last_state.timestamp;
if (dt_s < 0 || dt_s > 1) {
// cope with restarting while connected
initial_time_s = time_now_us * 1.0e-6f;
last_time_s = state.timestamp;
position_offset.zero();
return;
}
if (dt_s < 0.00001f) {
float delta_time = 0.001;
// don't go past the next expected frame
if (delta_time + extrapolated_s > average_frame_time_s) {
delta_time = average_frame_time_s - extrapolated_s;
}
if (delta_time <= 0) {
usleep(1000);
return;
}
time_now_us += delta_time * 1.0e6;
extrapolate_sensors(delta_time);
update_position();
update_mag_field_bf();
usleep(delta_time*1.0e6);
extrapolated_s += delta_time;
report_FPS();
return;
}
extrapolated_s = 0;
if (initial_time_s <= 0) {
dt_s = 0.001f;
initial_time_s = state.timestamp - dt_s;
}
// convert from state variables to ardupilot conventions
dcm.from_euler(state.pose.roll, -state.pose.pitch, -state.pose.yaw);
gyro = Vector3f(state.imu.angular_velocity[0],
-state.imu.angular_velocity[1],
-state.imu.angular_velocity[2]);
velocity_ef = Vector3f(state.velocity.world_linear_velocity[0],
-state.velocity.world_linear_velocity[1],
-state.velocity.world_linear_velocity[2]);
position = Vector3f(state.gps.x, -state.gps.y, -state.gps.z);
// Morse IMU accel is NEU, convert to NED
accel_body = Vector3f(state.imu.linear_acceleration[0],
-state.imu.linear_acceleration[1],
-state.imu.linear_acceleration[2]);
// limit to 16G to match pixhawk1
float a_limit = GRAVITY_MSS*16;
accel_body.x = constrain_float(accel_body.x, -a_limit, a_limit);
accel_body.y = constrain_float(accel_body.y, -a_limit, a_limit);
accel_body.z = constrain_float(accel_body.z, -a_limit, a_limit);
// offset based on first position to account for offset in morse world
if (position_offset.is_zero()) {
position_offset = position;
}
position -= position_offset;
update_position();
time_advance();
uint64_t new_time_us = (state.timestamp - initial_time_s)*1.0e6;
if (new_time_us < time_now_us) {
uint64_t dt_us = time_now_us - new_time_us;
if (dt_us > 500000) {
// time going backwards
time_now_us = new_time_us;
}
} else {
time_now_us = new_time_us;
}
last_time_s = state.timestamp;
// update magnetic field
update_mag_field_bf();
switch (output_type) {
case OUTPUT_ROVER:
output_rover(input);
break;
case OUTPUT_QUAD:
output_quad(input);
break;
}
report_FPS();
}
/*
report frame rates
*/
void Morse::report_FPS(void)
{
if (frame_counter++ % 1000 == 0) {
if (!is_zero(last_frame_count_s)) {
uint64_t frames = socket_frame_counter - last_socket_frame_counter;
last_socket_frame_counter = socket_frame_counter;
double dt = state.timestamp - last_frame_count_s;
printf("%.2f/%.2f FPS avg=%.2f\n",
frames / dt, 1000 / dt, 1.0/average_frame_time_s);
} else {
printf("Initial position %f %f %f\n", position.x, position.y, position.z);
}
last_frame_count_s = state.timestamp;
}
}