mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-18 06:38:29 -04:00
1036 lines
35 KiB
C++
1036 lines
35 KiB
C++
#pragma once
|
|
|
|
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
* AHRS (Attitude Heading Reference System) frontend interface for
|
|
* ArduPilot
|
|
*
|
|
*/
|
|
|
|
#include "AP_AHRS_config.h"
|
|
|
|
#include <AP_HAL/Semaphores.h>
|
|
|
|
#include "AP_AHRS_Backend.h"
|
|
#include <AP_NavEKF2/AP_NavEKF2.h>
|
|
#include <AP_NavEKF3/AP_NavEKF3.h>
|
|
#include <AP_NavEKF/AP_Nav_Common.h> // definitions shared by inertial and ekf nav filters
|
|
|
|
#include "AP_AHRS_DCM.h"
|
|
#include "AP_AHRS_SIM.h"
|
|
#include "AP_AHRS_External.h"
|
|
|
|
// forward declare view class
|
|
class AP_AHRS_View;
|
|
|
|
#define AP_AHRS_NAVEKF_SETTLE_TIME_MS 20000 // time in milliseconds the ekf needs to settle after being started
|
|
|
|
|
|
// fwd declare GSF estimator
|
|
class EKFGSF_yaw;
|
|
|
|
class AP_AHRS {
|
|
friend class AP_AHRS_View;
|
|
public:
|
|
|
|
enum Flags {
|
|
FLAG_ALWAYS_USE_EKF = 0x1,
|
|
};
|
|
|
|
// Constructor
|
|
AP_AHRS(uint8_t flags = 0);
|
|
|
|
// initialise
|
|
void init(void);
|
|
|
|
/* Do not allow copies */
|
|
CLASS_NO_COPY(AP_AHRS);
|
|
|
|
// get singleton instance
|
|
static AP_AHRS *get_singleton() {
|
|
return _singleton;
|
|
}
|
|
|
|
// periodically checks to see if we should update the AHRS
|
|
// orientation (e.g. based on the AHRS_ORIENTATION parameter)
|
|
// allow for runtime change of orientation
|
|
// this makes initial config easier
|
|
void update_orientation();
|
|
|
|
// allow threads to lock against AHRS update
|
|
HAL_Semaphore &get_semaphore(void) {
|
|
return _rsem;
|
|
}
|
|
|
|
// return the smoothed gyro vector corrected for drift
|
|
const Vector3f &get_gyro(void) const { return state.gyro_estimate; }
|
|
|
|
// return the current drift correction integrator value
|
|
const Vector3f &get_gyro_drift(void) const { return state.gyro_drift; }
|
|
|
|
// reset the current gyro drift estimate
|
|
// should be called if gyro offsets are recalculated
|
|
void reset_gyro_drift();
|
|
|
|
void update(bool skip_ins_update=false);
|
|
void reset();
|
|
|
|
// get current location estimate
|
|
bool get_location(Location &loc) const;
|
|
|
|
// get latest altitude estimate above ground level in meters and validity flag
|
|
bool get_hagl(float &hagl) const WARN_IF_UNUSED;
|
|
|
|
// status reporting of estimated error
|
|
float get_error_rp() const;
|
|
float get_error_yaw() const;
|
|
|
|
/*
|
|
* wind estimation support
|
|
*/
|
|
|
|
// enable wind estimation
|
|
void set_wind_estimation_enabled(bool b) { wind_estimation_enabled = b; }
|
|
|
|
// wind_estimation_enabled returns true if wind estimation is enabled
|
|
bool get_wind_estimation_enabled() const { return wind_estimation_enabled; }
|
|
|
|
// return a wind estimation vector, in m/s; returns 0,0,0 on failure
|
|
const Vector3f &wind_estimate() const { return state.wind_estimate; }
|
|
|
|
// return a wind estimation vector, in m/s; returns 0,0,0 on failure
|
|
bool wind_estimate(Vector3f &wind) const;
|
|
|
|
// Determine how aligned heading_deg is with the wind. Return result
|
|
// is 1.0 when perfectly aligned heading into wind, -1 when perfectly
|
|
// aligned with-wind, and zero when perfect cross-wind. There is no
|
|
// distinction between a left or right cross-wind. Wind speed is ignored
|
|
float wind_alignment(const float heading_deg) const;
|
|
|
|
// returns forward head-wind component in m/s. Negative means tail-wind
|
|
float head_wind(void) const;
|
|
|
|
// instruct DCM to update its wind estimate:
|
|
void estimate_wind() {
|
|
#if AP_AHRS_DCM_ENABLED
|
|
dcm.estimate_wind();
|
|
#endif
|
|
}
|
|
|
|
#if AP_AHRS_EXTERNAL_WIND_ESTIMATE_ENABLED
|
|
void set_external_wind_estimate(float speed, float direction) {
|
|
dcm.set_external_wind_estimate(speed, direction);
|
|
}
|
|
#endif
|
|
|
|
// return the parameter AHRS_WIND_MAX in metres per second
|
|
uint8_t get_max_wind() const {
|
|
return _wind_max;
|
|
}
|
|
|
|
/*
|
|
* airspeed support
|
|
*/
|
|
|
|
// get apparent to true airspeed ratio
|
|
float get_EAS2TAS(void) const;
|
|
|
|
// get air density / sea level density - decreases as altitude climbs
|
|
float get_air_density_ratio(void) const;
|
|
|
|
// return an airspeed estimate if available. return true
|
|
// if we have an estimate
|
|
bool airspeed_estimate(float &airspeed_ret) const;
|
|
|
|
enum AirspeedEstimateType : uint8_t {
|
|
NO_NEW_ESTIMATE = 0,
|
|
AIRSPEED_SENSOR = 1,
|
|
DCM_SYNTHETIC = 2,
|
|
EKF3_SYNTHETIC = 3,
|
|
SIM = 4,
|
|
};
|
|
|
|
// return an airspeed estimate if available. return true
|
|
// if we have an estimate
|
|
bool airspeed_estimate(float &airspeed_ret, AirspeedEstimateType &type) const;
|
|
|
|
// return true if the current AHRS airspeed estimate (from airspeed_estimate method) is directly derived from an airspeed sensor
|
|
bool using_airspeed_sensor() const;
|
|
|
|
// return a true airspeed estimate (navigation airspeed) if
|
|
// available. return true if we have an estimate
|
|
bool airspeed_estimate_true(float &airspeed_ret) const;
|
|
|
|
// return estimate of true airspeed vector in body frame in m/s
|
|
// returns false if estimate is unavailable
|
|
bool airspeed_vector_true(Vector3f &vec) const;
|
|
|
|
// return the innovation in m/s, innovation variance in (m/s)^2 and age in msec of the last TAS measurement processed
|
|
// returns false if the data is unavailable
|
|
bool airspeed_health_data(float &innovation, float &innovationVariance, uint32_t &age_ms) const;
|
|
|
|
// return true if a airspeed sensor is enabled
|
|
bool airspeed_sensor_enabled(void) const {
|
|
// FIXME: make this a method on the active backend
|
|
return AP_AHRS_Backend::airspeed_sensor_enabled();
|
|
}
|
|
|
|
// return true if a airspeed from a specific airspeed sensor is enabled
|
|
bool airspeed_sensor_enabled(uint8_t airspeed_index) const {
|
|
// FIXME: make this a method on the active backend
|
|
return AP_AHRS_Backend::airspeed_sensor_enabled(airspeed_index);
|
|
}
|
|
|
|
// return a synthetic airspeed estimate (one derived from sensors
|
|
// other than an actual airspeed sensor), if available. return
|
|
// true if we have a synthetic airspeed. ret will not be modified
|
|
// on failure.
|
|
bool synthetic_airspeed(float &ret) const WARN_IF_UNUSED;
|
|
|
|
// true if compass is being used
|
|
bool use_compass();
|
|
|
|
// return the quaternion defining the rotation from NED to XYZ (body) axes
|
|
bool get_quaternion(Quaternion &quat) const WARN_IF_UNUSED;
|
|
|
|
// return secondary attitude solution if available, as eulers in radians
|
|
bool get_secondary_attitude(Vector3f &eulers) const {
|
|
eulers = state.secondary_attitude;
|
|
return state.secondary_attitude_ok;
|
|
}
|
|
|
|
// return secondary attitude solution if available, as quaternion
|
|
bool get_secondary_quaternion(Quaternion &quat) const {
|
|
quat = state.secondary_quat;
|
|
return state.secondary_quat_ok;
|
|
}
|
|
|
|
// return secondary position solution if available
|
|
bool get_secondary_position(Location &loc) const {
|
|
loc = state.secondary_pos;
|
|
return state.secondary_pos_ok;
|
|
}
|
|
|
|
// EKF has a better ground speed vector estimate
|
|
const Vector2f &groundspeed_vector() const { return state.ground_speed_vec; }
|
|
|
|
// return ground speed estimate in meters/second. Used by ground vehicles.
|
|
float groundspeed(void) const { return state.ground_speed; }
|
|
|
|
const Vector3f &get_accel_ef() const {
|
|
return state.accel_ef;
|
|
}
|
|
|
|
// Retrieves the corrected NED delta velocity in use by the inertial navigation
|
|
void getCorrectedDeltaVelocityNED(Vector3f& ret, float& dt) const {
|
|
ret = state.corrected_dv;
|
|
dt = state.corrected_dv_dt;
|
|
}
|
|
|
|
// set the EKF's origin location in 10e7 degrees. This should only
|
|
// be called when the EKF has no absolute position reference (i.e. GPS)
|
|
// from which to decide the origin on its own
|
|
bool set_origin(const Location &loc) WARN_IF_UNUSED;
|
|
|
|
#if AP_AHRS_POSITION_RESET_ENABLED
|
|
// Set the EKF's NE horizontal position states and their corresponding variances from the supplied WGS-84 location
|
|
// and 1-sigma horizontal position uncertainty. This can be used when the EKF is dead reckoning to periodically
|
|
// correct the position. If the EKF is is still using data from a postion sensor such as GPS, the position set
|
|
// will not be performed.
|
|
// pos_accuracy is the standard deviation of the horizontal position uncertainty in metres.
|
|
// The altitude element of the location is not used.
|
|
// Returns true if the set was successful.
|
|
bool handle_external_position_estimate(const Location &loc, float pos_accuracy, uint32_t timestamp_);
|
|
#endif
|
|
|
|
// returns the inertial navigation origin in lat/lon/alt
|
|
bool get_origin(Location &ret) const WARN_IF_UNUSED;
|
|
|
|
bool have_inertial_nav() const;
|
|
|
|
// return a ground velocity in meters/second, North/East/Down
|
|
// order. Must only be called if have_inertial_nav() is true
|
|
bool get_velocity_NED(Vector3f &vec) const WARN_IF_UNUSED;
|
|
|
|
// return the relative position NED from either home or origin
|
|
// return true if the estimate is valid
|
|
bool get_relative_position_NED_home(Vector3f &vec) const WARN_IF_UNUSED;
|
|
bool get_relative_position_NED_origin(Vector3f &vec) const WARN_IF_UNUSED;
|
|
|
|
// return the relative position NE from home or origin
|
|
// return true if the estimate is valid
|
|
bool get_relative_position_NE_home(Vector2f &posNE) const WARN_IF_UNUSED;
|
|
bool get_relative_position_NE_origin(Vector2f &posNE) const WARN_IF_UNUSED;
|
|
|
|
// return the relative position down from home or origin
|
|
// baro will be used for the _home relative one if the EKF isn't
|
|
void get_relative_position_D_home(float &posD) const;
|
|
bool get_relative_position_D_origin(float &posD) const WARN_IF_UNUSED;
|
|
|
|
// return location corresponding to vector relative to the
|
|
// vehicle's origin
|
|
bool get_location_from_origin_offset_NED(Location &loc, const Vector3p &offset_ned) const WARN_IF_UNUSED;
|
|
bool get_location_from_home_offset_NED(Location &loc, const Vector3p &offset_ned) const WARN_IF_UNUSED;
|
|
|
|
// Get a derivative of the vertical position in m/s which is kinematically consistent with the vertical position is required by some control loops.
|
|
// This is different to the vertical velocity from the EKF which is not always consistent with the vertical position due to the various errors that are being corrected for.
|
|
bool get_vert_pos_rate_D(float &velocity) const;
|
|
|
|
// write optical flow measurements to EKF
|
|
void writeOptFlowMeas(const uint8_t rawFlowQuality, const Vector2f &rawFlowRates, const Vector2f &rawGyroRates, const uint32_t msecFlowMeas, const Vector3f &posOffset, const float heightOverride);
|
|
|
|
// retrieve latest corrected optical flow samples (used for calibration)
|
|
bool getOptFlowSample(uint32_t& timeStamp_ms, Vector2f& flowRate, Vector2f& bodyRate, Vector2f& losPred) const;
|
|
|
|
// write body odometry measurements to the EKF
|
|
void writeBodyFrameOdom(float quality, const Vector3f &delPos, const Vector3f &delAng, float delTime, uint32_t timeStamp_ms, uint16_t delay_ms, const Vector3f &posOffset);
|
|
|
|
// Writes the default equivalent airspeed and its 1-sigma uncertainty in m/s to be used in forward flight if a measured airspeed is required and not available.
|
|
void writeDefaultAirSpeed(float airspeed, float uncertainty);
|
|
|
|
// Write position and quaternion data from an external navigation system
|
|
void writeExtNavData(const Vector3f &pos, const Quaternion &quat, float posErr, float angErr, uint32_t timeStamp_ms, uint16_t delay_ms, uint32_t resetTime_ms);
|
|
|
|
// Write velocity data from an external navigation system
|
|
void writeExtNavVelData(const Vector3f &vel, float err, uint32_t timeStamp_ms, uint16_t delay_ms);
|
|
|
|
// get speed limit
|
|
void getControlLimits(float &ekfGndSpdLimit, float &controlScaleXY) const;
|
|
float getControlScaleZ(void) const;
|
|
|
|
// is the AHRS subsystem healthy?
|
|
bool healthy() const;
|
|
|
|
// returns false if we fail arming checks, in which case the buffer will be populated with a failure message
|
|
// requires_position should be true if horizontal position configuration should be checked
|
|
bool pre_arm_check(bool requires_position, char *failure_msg, uint8_t failure_msg_len) const;
|
|
|
|
// true if the AHRS has completed initialisation
|
|
bool initialised() const;
|
|
|
|
#if AP_AHRS_DCM_ENABLED
|
|
// return true if *DCM* yaw has been initialised
|
|
bool dcm_yaw_initialised(void) const {
|
|
return dcm.yaw_initialised();
|
|
}
|
|
#endif
|
|
|
|
// get_filter_status - returns filter status as a series of flags
|
|
bool get_filter_status(nav_filter_status &status) const;
|
|
|
|
// get compass offset estimates
|
|
// true if offsets are valid
|
|
bool getMagOffsets(uint8_t mag_idx, Vector3f &magOffsets) const;
|
|
|
|
// return the amount of yaw angle change due to the last yaw angle reset in radians
|
|
// returns the time of the last yaw angle reset or 0 if no reset has ever occurred
|
|
uint32_t getLastYawResetAngle(float &yawAng);
|
|
|
|
// return the amount of NE position change in meters due to the last reset
|
|
// returns the time of the last reset or 0 if no reset has ever occurred
|
|
uint32_t getLastPosNorthEastReset(Vector2f &pos);
|
|
|
|
// return the amount of NE velocity change in meters/sec due to the last reset
|
|
// returns the time of the last reset or 0 if no reset has ever occurred
|
|
uint32_t getLastVelNorthEastReset(Vector2f &vel) const;
|
|
|
|
// return the amount of vertical position change due to the last reset in meters
|
|
// returns the time of the last reset or 0 if no reset has ever occurred
|
|
uint32_t getLastPosDownReset(float &posDelta);
|
|
|
|
// Resets the baro so that it reads zero at the current height
|
|
// Resets the EKF height to zero
|
|
// Adjusts the EKf origin height so that the EKF height + origin height is the same as before
|
|
// Returns true if the height datum reset has been performed
|
|
// If using a range finder for height no reset is performed and it returns false
|
|
bool resetHeightDatum();
|
|
|
|
// send a EKF_STATUS_REPORT for current EKF
|
|
void send_ekf_status_report(class GCS_MAVLINK &link) const;
|
|
|
|
// get_hgt_ctrl_limit - get maximum height to be observed by the control loops in meters and a validity flag
|
|
// this is used to limit height during optical flow navigation
|
|
// it will return invalid when no limiting is required
|
|
bool get_hgt_ctrl_limit(float &limit) const;
|
|
|
|
// Set to true if the terrain underneath is stable enough to be used as a height reference
|
|
// this is not related to terrain following
|
|
void set_terrain_hgt_stable(bool stable);
|
|
|
|
// return the innovations for the specified instance
|
|
// An out of range instance (eg -1) returns data for the primary instance
|
|
bool get_innovations(Vector3f &velInnov, Vector3f &posInnov, Vector3f &magInnov, float &tasInnov, float &yawInnov) const;
|
|
|
|
// returns true when the state estimates are significantly degraded by vibration
|
|
bool is_vibration_affected() const;
|
|
|
|
// get_variances - provides the innovations normalised using the innovation variance where a value of 0
|
|
// indicates perfect consistency between the measurement and the EKF solution and a value of 1 is the maximum
|
|
// inconsistency that will be accepted by the filter
|
|
// boolean false is returned if variances are not available
|
|
bool get_variances(float &velVar, float &posVar, float &hgtVar, Vector3f &magVar, float &tasVar) const;
|
|
|
|
// get a source's velocity innovations
|
|
// returns true on success and results are placed in innovations and variances arguments
|
|
bool get_vel_innovations_and_variances_for_source(uint8_t source, Vector3f &innovations, Vector3f &variances) const WARN_IF_UNUSED;
|
|
|
|
// returns the expected NED magnetic field
|
|
bool get_mag_field_NED(Vector3f& ret) const;
|
|
|
|
// returns the estimated magnetic field offsets in body frame
|
|
bool get_mag_field_correction(Vector3f &ret) const;
|
|
|
|
// return the index of the airspeed we should use for airspeed measurements
|
|
// with multiple airspeed sensors and airspeed affinity in EKF3, it is possible to have switched
|
|
// over to a lane not using the primary airspeed sensor, so AHRS should know which airspeed sensor
|
|
// to use, i.e, the one being used by the primary lane. A lane switch could have happened due to an
|
|
// airspeed sensor fault, which makes this even more necessary
|
|
uint8_t get_active_airspeed_index() const;
|
|
|
|
// return the index of the primary core or -1 if no primary core selected
|
|
int8_t get_primary_core_index() const { return state.primary_core; }
|
|
|
|
// get the index of the current primary accelerometer sensor
|
|
uint8_t get_primary_accel_index(void) const { return state.primary_accel; }
|
|
|
|
// get the index of the current primary gyro sensor
|
|
uint8_t get_primary_gyro_index(void) const { return state.primary_gyro; }
|
|
|
|
// see if EKF lane switching is possible to avoid EKF failsafe
|
|
void check_lane_switch(void);
|
|
|
|
// request EKF yaw reset to try and avoid the need for an EKF lane switch or failsafe
|
|
void request_yaw_reset(void);
|
|
|
|
// set position, velocity and yaw sources to either 0=primary, 1=secondary, 2=tertiary
|
|
void set_posvelyaw_source_set(AP_NavEKF_Source::SourceSetSelection source_set_idx);
|
|
|
|
//returns index of active source set used, 0=primary, 1=secondary, 2=tertiary
|
|
uint8_t get_posvelyaw_source_set() const;
|
|
|
|
void Log_Write();
|
|
|
|
// check if non-compass sensor is providing yaw. Allows compass pre-arm checks to be bypassed
|
|
bool using_noncompass_for_yaw(void) const;
|
|
|
|
// check if external nav is providing yaw
|
|
bool using_extnav_for_yaw(void) const;
|
|
|
|
// set and save the ALT_M_NSE parameter value
|
|
void set_alt_measurement_noise(float noise);
|
|
|
|
// get the selected ekf type, for allocation decisions
|
|
int8_t get_ekf_type(void) const {
|
|
return _ekf_type;
|
|
}
|
|
|
|
enum class EKFType : uint8_t {
|
|
#if AP_AHRS_DCM_ENABLED
|
|
DCM = 0,
|
|
#endif
|
|
#if HAL_NAVEKF3_AVAILABLE
|
|
THREE = 3,
|
|
#endif
|
|
#if HAL_NAVEKF2_AVAILABLE
|
|
TWO = 2,
|
|
#endif
|
|
#if AP_AHRS_SIM_ENABLED
|
|
SIM = 10,
|
|
#endif
|
|
#if AP_AHRS_EXTERNAL_ENABLED
|
|
EXTERNAL = 11,
|
|
#endif
|
|
};
|
|
|
|
// set the selected ekf type, for RC aux control
|
|
void set_ekf_type(EKFType ahrs_type) {
|
|
_ekf_type.set(ahrs_type);
|
|
}
|
|
|
|
// these are only out here so vehicles can reference them for parameters
|
|
#if HAL_NAVEKF2_AVAILABLE
|
|
NavEKF2 EKF2;
|
|
#endif
|
|
#if HAL_NAVEKF3_AVAILABLE
|
|
NavEKF3 EKF3;
|
|
#endif
|
|
|
|
// for holding parameters
|
|
static const struct AP_Param::GroupInfo var_info[];
|
|
|
|
// create a view
|
|
AP_AHRS_View *create_view(enum Rotation rotation, float pitch_trim_deg=0);
|
|
|
|
// write AOA and SSA information to dataflash logs:
|
|
void Write_AOA_SSA(void) const;
|
|
|
|
// return AOA
|
|
float getAOA(void) const { return _AOA; }
|
|
|
|
// return SSA
|
|
float getSSA(void) const { return _SSA; }
|
|
|
|
/*
|
|
* trim-related functions
|
|
*/
|
|
|
|
// get trim
|
|
const Vector3f &get_trim() const { return _trim.get(); }
|
|
|
|
// set trim
|
|
void set_trim(const Vector3f &new_trim);
|
|
|
|
// add_trim - adjust the roll and pitch trim up to a total of 10 degrees
|
|
void add_trim(float roll_in_radians, float pitch_in_radians, bool save_to_eeprom = true);
|
|
|
|
// trim rotation matrices:
|
|
const Matrix3f& get_rotation_autopilot_body_to_vehicle_body(void) const { return _rotation_autopilot_body_to_vehicle_body; }
|
|
const Matrix3f& get_rotation_vehicle_body_to_autopilot_body(void) const { return _rotation_vehicle_body_to_autopilot_body; }
|
|
|
|
// Logging functions
|
|
void Log_Write_Home_And_Origin();
|
|
void Write_Attitude(const Vector3f &targets) const;
|
|
|
|
enum class LogOriginType {
|
|
ekf_origin = 0,
|
|
ahrs_home = 1
|
|
};
|
|
void Write_Origin(LogOriginType origin_type, const Location &loc) const;
|
|
void write_video_stabilisation() const;
|
|
|
|
// return a smoothed and corrected gyro vector in radians/second
|
|
// using the latest ins data (which may not have been consumed by
|
|
// the EKF yet)
|
|
Vector3f get_gyro_latest(void) const;
|
|
|
|
// get yaw rate in earth frame in radians/sec
|
|
float get_yaw_rate_earth(void) const {
|
|
return get_gyro() * get_rotation_body_to_ned().c;
|
|
}
|
|
|
|
/*
|
|
* home-related functionality
|
|
*/
|
|
|
|
// get the home location. This is const to prevent any changes to
|
|
// home without telling AHRS about the change
|
|
const Location &get_home(void) const {
|
|
return _home;
|
|
}
|
|
|
|
// functions to handle locking of home. Some vehicles use this to
|
|
// allow GCS to lock in a home location.
|
|
void lock_home() {
|
|
_home_locked = true;
|
|
}
|
|
bool home_is_locked() const {
|
|
return _home_locked;
|
|
}
|
|
|
|
// returns true if home is set
|
|
bool home_is_set(void) const {
|
|
return _home_is_set;
|
|
}
|
|
|
|
// set the home location in 10e7 degrees. This should be called
|
|
// when the vehicle is at this position. It is assumed that the
|
|
// current barometer and GPS altitudes correspond to this altitude
|
|
bool set_home(const Location &loc) WARN_IF_UNUSED;
|
|
|
|
/*
|
|
* Attitude-related public methods and attributes:
|
|
*/
|
|
|
|
// roll/pitch/yaw euler angles, all in radians
|
|
float get_roll() const { return roll; }
|
|
float get_pitch() const { return pitch; }
|
|
float get_yaw() const { return yaw; }
|
|
|
|
// helper trig value accessors
|
|
float cos_roll() const {
|
|
return _cos_roll;
|
|
}
|
|
float cos_pitch() const {
|
|
return _cos_pitch;
|
|
}
|
|
float cos_yaw() const {
|
|
return _cos_yaw;
|
|
}
|
|
float sin_roll() const {
|
|
return _sin_roll;
|
|
}
|
|
float sin_pitch() const {
|
|
return _sin_pitch;
|
|
}
|
|
float sin_yaw() const {
|
|
return _sin_yaw;
|
|
}
|
|
|
|
// integer Euler angles (Degrees * 100)
|
|
int32_t roll_sensor;
|
|
int32_t pitch_sensor;
|
|
int32_t yaw_sensor;
|
|
|
|
const Matrix3f &get_rotation_body_to_ned(void) const { return state.dcm_matrix; }
|
|
|
|
// return a Quaternion representing our current attitude in NED frame
|
|
void get_quat_body_to_ned(Quaternion &quat) const;
|
|
|
|
#if AP_AHRS_DCM_ENABLED
|
|
// get rotation matrix specifically from DCM backend (used for
|
|
// compass calibrator)
|
|
const Matrix3f &get_DCM_rotation_body_to_ned(void) const {
|
|
return dcm_estimates.dcm_matrix;
|
|
}
|
|
#endif
|
|
|
|
// rotate a 2D vector from earth frame to body frame
|
|
// in result, x is forward, y is right
|
|
Vector2f earth_to_body2D(const Vector2f &ef_vector) const;
|
|
|
|
// rotate a 2D vector from earth frame to body frame
|
|
// in input, x is forward, y is right
|
|
Vector2f body_to_earth2D(const Vector2f &bf) const;
|
|
|
|
// convert a vector from body to earth frame
|
|
Vector3f body_to_earth(const Vector3f &v) const;
|
|
|
|
// convert a vector from earth to body frame
|
|
Vector3f earth_to_body(const Vector3f &v) const;
|
|
|
|
/*
|
|
* methods for the benefit of LUA bindings
|
|
*/
|
|
// return current vibration vector for primary IMU
|
|
Vector3f get_vibration(void) const;
|
|
|
|
// return primary accels
|
|
const Vector3f &get_accel(void) const {
|
|
return AP::ins().get_accel(_get_primary_accel_index());
|
|
}
|
|
|
|
// return primary accel bias. This should be subtracted from
|
|
// get_accel() vector to get best current body frame accel
|
|
// estimate
|
|
const Vector3f &get_accel_bias(void) const {
|
|
return state.accel_bias;
|
|
}
|
|
|
|
/*
|
|
* AHRS is used as a transport for vehicle-takeoff-expected and
|
|
* vehicle-landing-expected:
|
|
*/
|
|
void set_takeoff_expected(bool b);
|
|
|
|
bool get_takeoff_expected(void) const {
|
|
return takeoff_expected;
|
|
}
|
|
|
|
void set_touchdown_expected(bool b);
|
|
|
|
bool get_touchdown_expected(void) const {
|
|
return touchdown_expected;
|
|
}
|
|
|
|
/*
|
|
* fly_forward is set by the vehicles to indicate the vehicle
|
|
* should generally be moving in the direction of its heading.
|
|
* It is an additional piece of information that the backends can
|
|
* use to provide additional and/or improved estimates.
|
|
*/
|
|
void set_fly_forward(bool b) {
|
|
fly_forward = b;
|
|
}
|
|
bool get_fly_forward(void) const {
|
|
return fly_forward;
|
|
}
|
|
|
|
/* we modify our behaviour based on what sort of vehicle the
|
|
* vehicle code tells us we are. This information is also pulled
|
|
* from AP_AHRS by other libraries
|
|
*/
|
|
enum class VehicleClass : uint8_t {
|
|
UNKNOWN,
|
|
GROUND,
|
|
COPTER,
|
|
FIXED_WING,
|
|
SUBMARINE,
|
|
};
|
|
VehicleClass get_vehicle_class(void) const {
|
|
return _vehicle_class;
|
|
}
|
|
void set_vehicle_class(VehicleClass vclass) {
|
|
_vehicle_class = vclass;
|
|
}
|
|
|
|
// get the view
|
|
AP_AHRS_View *get_view(void) const { return _view; };
|
|
|
|
// get access to an EKFGSF_yaw estimator
|
|
const EKFGSF_yaw *get_yaw_estimator(void) const;
|
|
|
|
private:
|
|
|
|
// roll/pitch/yaw euler angles, all in radians
|
|
float roll;
|
|
float pitch;
|
|
float yaw;
|
|
|
|
// optional view class
|
|
AP_AHRS_View *_view;
|
|
|
|
static AP_AHRS *_singleton;
|
|
|
|
/* we modify our behaviour based on what sort of vehicle the
|
|
* vehicle code tells us we are. This information is also pulled
|
|
* from AP_AHRS by other libraries
|
|
*/
|
|
VehicleClass _vehicle_class{VehicleClass::UNKNOWN};
|
|
|
|
// multi-thread access support
|
|
HAL_Semaphore _rsem;
|
|
|
|
/*
|
|
* Parameters
|
|
*/
|
|
AP_Int8 _wind_max;
|
|
AP_Int8 _board_orientation;
|
|
AP_Enum<EKFType> _ekf_type;
|
|
|
|
/*
|
|
* DCM-backend parameters; it takes references to these
|
|
*/
|
|
// settable parameters
|
|
AP_Float _kp_yaw;
|
|
AP_Float _kp;
|
|
AP_Float gps_gain;
|
|
|
|
AP_Float beta;
|
|
|
|
AP_Enum<GPSUse> _gps_use;
|
|
AP_Int8 _gps_minsats;
|
|
|
|
EKFType active_EKF_type(void) const { return state.active_EKF; }
|
|
|
|
bool always_use_EKF() const {
|
|
return _ekf_flags & FLAG_ALWAYS_USE_EKF;
|
|
}
|
|
|
|
// check all cores providing consistent attitudes for prearm checks
|
|
bool attitudes_consistent(char *failure_msg, const uint8_t failure_msg_len) const;
|
|
// convenience method for setting error string:
|
|
void set_failure_inconsistent_message(const char *estimator, const char *axis, float diff_rad, char *failure_msg, const uint8_t failure_msg_len) const;
|
|
|
|
/*
|
|
* Attitude-related private methods and attributes:
|
|
*/
|
|
// calculate sin/cos of roll/pitch/yaw from rotation
|
|
void calc_trig(const Matrix3f &rot,
|
|
float &cr, float &cp, float &cy,
|
|
float &sr, float &sp, float &sy) const;
|
|
|
|
// update_trig - recalculates _cos_roll, _cos_pitch, etc based on latest attitude
|
|
// should be called after _dcm_matrix is updated
|
|
void update_trig(void);
|
|
|
|
// update roll_sensor, pitch_sensor and yaw_sensor
|
|
void update_cd_values(void);
|
|
|
|
// helper trig variables
|
|
float _cos_roll{1.0f};
|
|
float _cos_pitch{1.0f};
|
|
float _cos_yaw{1.0f};
|
|
float _sin_roll;
|
|
float _sin_pitch;
|
|
float _sin_yaw;
|
|
|
|
#if HAL_NAVEKF2_AVAILABLE
|
|
void update_EKF2(void);
|
|
bool _ekf2_started;
|
|
#endif
|
|
#if HAL_NAVEKF3_AVAILABLE
|
|
bool _ekf3_started;
|
|
void update_EKF3(void);
|
|
#endif
|
|
|
|
// rotation from vehicle body to NED frame
|
|
|
|
|
|
const uint16_t startup_delay_ms = 1000;
|
|
uint32_t start_time_ms;
|
|
uint8_t _ekf_flags; // bitmask from Flags enumeration
|
|
|
|
EKFType ekf_type(void) const;
|
|
void update_DCM();
|
|
|
|
/*
|
|
* home-related state
|
|
*/
|
|
void load_watchdog_home();
|
|
bool _checked_watchdog_home;
|
|
Location _home;
|
|
bool _home_is_set :1;
|
|
bool _home_locked :1;
|
|
|
|
// avoid setting current state repeatedly across all cores on all EKFs:
|
|
enum class TriState {
|
|
False = 0,
|
|
True = 1,
|
|
UNKNOWN = 3,
|
|
};
|
|
|
|
TriState terrainHgtStableState = TriState::UNKNOWN;
|
|
|
|
/*
|
|
* private AOA and SSA-related state and methods
|
|
*/
|
|
float _AOA, _SSA;
|
|
uint32_t _last_AOA_update_ms;
|
|
void update_AOA_SSA(void);
|
|
|
|
EKFType last_active_ekf_type;
|
|
|
|
#if AP_AHRS_SIM_ENABLED
|
|
void update_SITL(void);
|
|
#endif
|
|
|
|
#if AP_AHRS_EXTERNAL_ENABLED
|
|
void update_external(void);
|
|
#endif
|
|
|
|
/*
|
|
* trim-related state and private methods:
|
|
*/
|
|
|
|
// a vector to capture the difference between the controller and body frames
|
|
AP_Vector3f _trim;
|
|
|
|
// cached trim rotations
|
|
Vector3f _last_trim;
|
|
|
|
Matrix3f _rotation_autopilot_body_to_vehicle_body;
|
|
Matrix3f _rotation_vehicle_body_to_autopilot_body;
|
|
|
|
// last time orientation was updated from AHRS_ORIENTATION:
|
|
uint32_t last_orientation_update_ms;
|
|
|
|
// updates matrices responsible for rotating vectors from vehicle body
|
|
// frame to autopilot body frame from _trim variables
|
|
void update_trim_rotation_matrices();
|
|
|
|
/*
|
|
* AHRS is used as a transport for vehicle-takeoff-expected and
|
|
* vehicle-landing-expected:
|
|
*/
|
|
// update takeoff/touchdown flags
|
|
void update_flags();
|
|
bool takeoff_expected; // true if the vehicle is in a state that takeoff might be expected. Ground effect may be in play.
|
|
uint32_t takeoff_expected_start_ms;
|
|
bool touchdown_expected; // true if the vehicle is in a state that touchdown might be expected. Ground effect may be in play.
|
|
uint32_t touchdown_expected_start_ms;
|
|
|
|
/*
|
|
* wind estimation support
|
|
*/
|
|
bool wind_estimation_enabled;
|
|
|
|
/*
|
|
* fly_forward is set by the vehicles to indicate the vehicle
|
|
* should generally be moving in the direction of its heading.
|
|
* It is an additional piece of information that the backends can
|
|
* use to provide additional and/or improved estimates.
|
|
*/
|
|
bool fly_forward; // true if we can assume the vehicle will be flying forward on its X axis
|
|
|
|
// poke AP_Notify based on values from status
|
|
void update_notify_from_filter_status(const nav_filter_status &status);
|
|
|
|
/*
|
|
* copy results from a backend over AP_AHRS canonical results.
|
|
* This updates member variables like roll and pitch, as well as
|
|
* updating derived values like sin_roll and sin_pitch.
|
|
*/
|
|
void copy_estimates_from_backend_estimates(const AP_AHRS_Backend::Estimates &results);
|
|
|
|
// write out secondary estimates:
|
|
void Write_AHRS2(void) const;
|
|
// write POS (canonical vehicle position) message out:
|
|
void Write_POS(void) const;
|
|
|
|
// return an airspeed estimate if available. return true
|
|
// if we have an estimate
|
|
bool _airspeed_estimate(float &airspeed_ret, AirspeedEstimateType &status) const;
|
|
|
|
// return secondary attitude solution if available, as eulers in radians
|
|
bool _get_secondary_attitude(Vector3f &eulers) const;
|
|
|
|
// return secondary attitude solution if available, as quaternion
|
|
bool _get_secondary_quaternion(Quaternion &quat) const;
|
|
|
|
// get ground speed 2D
|
|
Vector2f _groundspeed_vector(void);
|
|
|
|
// get active EKF type
|
|
EKFType _active_EKF_type(void) const;
|
|
|
|
// return a wind estimation vector, in m/s
|
|
bool _wind_estimate(Vector3f &wind) const WARN_IF_UNUSED;
|
|
|
|
// return a true airspeed estimate (navigation airspeed) if
|
|
// available. return true if we have an estimate
|
|
bool _airspeed_estimate_true(float &airspeed_ret) const;
|
|
|
|
// return estimate of true airspeed vector in body frame in m/s
|
|
// returns false if estimate is unavailable
|
|
bool _airspeed_vector_true(Vector3f &vec) const;
|
|
|
|
// return the quaternion defining the rotation from NED to XYZ (body) axes
|
|
bool _get_quaternion(Quaternion &quat) const WARN_IF_UNUSED;
|
|
|
|
// return secondary position solution if available
|
|
bool _get_secondary_position(Location &loc) const;
|
|
|
|
// return ground speed estimate in meters/second. Used by ground vehicles.
|
|
float _groundspeed(void);
|
|
|
|
// Retrieves the corrected NED delta velocity in use by the inertial navigation
|
|
void _getCorrectedDeltaVelocityNED(Vector3f& ret, float& dt) const;
|
|
|
|
// returns the inertial navigation origin in lat/lon/alt
|
|
bool _get_origin(Location &ret) const WARN_IF_UNUSED;
|
|
|
|
// return origin for a specified EKF type
|
|
bool _get_origin(EKFType type, Location &ret) const;
|
|
|
|
// return a ground velocity in meters/second, North/East/Down
|
|
// order. Must only be called if have_inertial_nav() is true
|
|
bool _get_velocity_NED(Vector3f &vec) const WARN_IF_UNUSED;
|
|
|
|
// get secondary EKF type. returns false if no secondary (i.e. only using DCM)
|
|
bool _get_secondary_EKF_type(EKFType &secondary_ekf_type) const;
|
|
|
|
// return the index of the primary core or -1 if no primary core selected
|
|
int8_t _get_primary_core_index() const;
|
|
|
|
// get the index of the current primary accelerometer sensor
|
|
uint8_t _get_primary_accel_index(void) const;
|
|
|
|
// get the index of the current primary gyro sensor
|
|
uint8_t _get_primary_gyro_index(void) const;
|
|
|
|
// get the index of the current primary IMU
|
|
uint8_t _get_primary_IMU_index(void) const;
|
|
|
|
// get current location estimate
|
|
bool _get_location(Location &loc) const;
|
|
|
|
// return true if a airspeed sensor should be used for the AHRS airspeed estimate
|
|
bool _should_use_airspeed_sensor(uint8_t airspeed_index) const;
|
|
|
|
/*
|
|
update state structure
|
|
*/
|
|
void update_state(void);
|
|
|
|
// returns an EKF type to be used as active if we decide the
|
|
// primary is not good enough.
|
|
EKFType fallback_active_EKF_type(void) const;
|
|
|
|
/*
|
|
state updated at the end of each update() call
|
|
*/
|
|
struct {
|
|
EKFType active_EKF;
|
|
uint8_t primary_IMU;
|
|
uint8_t primary_gyro;
|
|
uint8_t primary_accel;
|
|
uint8_t primary_core;
|
|
Vector3f gyro_estimate;
|
|
Matrix3f dcm_matrix;
|
|
Vector3f gyro_drift;
|
|
Vector3f accel_ef;
|
|
Vector3f accel_bias;
|
|
Vector3f wind_estimate;
|
|
bool wind_estimate_ok;
|
|
float EAS2TAS;
|
|
bool airspeed_ok;
|
|
float airspeed;
|
|
AirspeedEstimateType airspeed_estimate_type;
|
|
bool airspeed_true_ok;
|
|
float airspeed_true;
|
|
Vector3f airspeed_vec;
|
|
bool airspeed_vec_ok;
|
|
Quaternion quat;
|
|
bool quat_ok;
|
|
Vector3f secondary_attitude;
|
|
bool secondary_attitude_ok;
|
|
Quaternion secondary_quat;
|
|
bool secondary_quat_ok;
|
|
Location location;
|
|
bool location_ok;
|
|
Location secondary_pos;
|
|
bool secondary_pos_ok;
|
|
Vector2f ground_speed_vec;
|
|
float ground_speed;
|
|
Vector3f corrected_dv;
|
|
float corrected_dv_dt;
|
|
Location origin;
|
|
bool origin_ok;
|
|
Vector3f velocity_NED;
|
|
bool velocity_NED_ok;
|
|
} state;
|
|
|
|
/*
|
|
* backends (and their results)
|
|
*/
|
|
#if AP_AHRS_DCM_ENABLED
|
|
AP_AHRS_DCM dcm{_kp_yaw, _kp, gps_gain, beta, _gps_use, _gps_minsats};
|
|
struct AP_AHRS_Backend::Estimates dcm_estimates;
|
|
#endif
|
|
#if AP_AHRS_SIM_ENABLED
|
|
#if HAL_NAVEKF3_AVAILABLE
|
|
AP_AHRS_SIM sim{EKF3};
|
|
#else
|
|
AP_AHRS_SIM sim;
|
|
#endif
|
|
struct AP_AHRS_Backend::Estimates sim_estimates;
|
|
#endif
|
|
|
|
#if AP_AHRS_EXTERNAL_ENABLED
|
|
AP_AHRS_External external;
|
|
struct AP_AHRS_Backend::Estimates external_estimates;
|
|
#endif
|
|
|
|
enum class Options : uint16_t {
|
|
DISABLE_DCM_FALLBACK_FW=(1U<<0),
|
|
DISABLE_DCM_FALLBACK_VTOL=(1U<<1),
|
|
DISABLE_AIRSPEED_EKF_CHECK=(1U<<2),
|
|
};
|
|
AP_Int16 _options;
|
|
|
|
bool option_set(Options option) const {
|
|
return (_options & uint16_t(option)) != 0;
|
|
}
|
|
|
|
// true when we have completed the common origin setup
|
|
bool done_common_origin;
|
|
};
|
|
|
|
namespace AP {
|
|
AP_AHRS &ahrs();
|
|
};
|