ardupilot/libraries/AP_OSD/AP_OSD_Screen.cpp
2018-07-10 08:52:02 +10:00

665 lines
20 KiB
C++

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* AP_OSD partially based on betaflight and inav osd.c implemention.
* clarity.mcm font is taken from inav configurator.
* Many thanks to their authors.
*/
/*
parameter settings for one screen
*/
#include "AP_OSD.h"
#include "AP_OSD_Backend.h"
#include <AP_HAL/AP_HAL.h>
#include <AP_HAL/Util.h>
#include <AP_AHRS/AP_AHRS.h>
#include <AP_Math/AP_Math.h>
#include <AP_RSSI/AP_RSSI.h>
#include <AP_Notify/AP_Notify.h>
#include <ctype.h>
#include <GCS_MAVLink/GCS.h>
const AP_Param::GroupInfo AP_OSD_Screen::var_info[] = {
// @Param: ENABLE
// @DisplayName: Enable screen
// @Description: Enable this screen
// @Values: 0:Disabled,1:Enabled
// @User: Standard
AP_GROUPINFO_FLAGS("ENABLE", 1, AP_OSD_Screen, enabled, 0, AP_PARAM_FLAG_ENABLE),
// @Param: CHAN_MIN
// @DisplayName: Transmitter switch screen minimum pwm
// @Description: This sets the PWM lower limit for this screen
// @Range: 900 2100
// @User: Standard
AP_GROUPINFO("CHAN_MIN", 2, AP_OSD_Screen, channel_min, 900),
// @Param: CHAN_MAX
// @DisplayName: Transmitter switch screen maximum pwm
// @Description: This sets the PWM upper limit for this screen
// @Range: 900 2100
// @User: Standard
AP_GROUPINFO("CHAN_MAX", 3, AP_OSD_Screen, channel_max, 2100),
// @Group: ALTITUDE
// @Path: AP_OSD_Setting.cpp
AP_SUBGROUPINFO(altitude, "ALTITUDE", 4, AP_OSD_Screen, AP_OSD_Setting),
// @Group: BATVOLT
// @Path: AP_OSD_Setting.cpp
AP_SUBGROUPINFO(bat_volt, "BAT_VOLT", 5, AP_OSD_Screen, AP_OSD_Setting),
// @Group: RSSI
// @Path: AP_OSD_Setting.cpp
AP_SUBGROUPINFO(rssi, "RSSI", 6, AP_OSD_Screen, AP_OSD_Setting),
// @Group: CURRENT
// @Path: AP_OSD_Setting.cpp
AP_SUBGROUPINFO(current, "CURRENT", 7, AP_OSD_Screen, AP_OSD_Setting),
// @Group: BATUSED
// @Path: AP_OSD_Setting.cpp
AP_SUBGROUPINFO(batused, "BATUSED", 8, AP_OSD_Screen, AP_OSD_Setting),
// @Group: SATS
// @Path: AP_OSD_Setting.cpp
AP_SUBGROUPINFO(sats, "SATS", 9, AP_OSD_Screen, AP_OSD_Setting),
// @Group: FLTMODE
// @Path: AP_OSD_Setting.cpp
AP_SUBGROUPINFO(fltmode, "FLTMODE", 10, AP_OSD_Screen, AP_OSD_Setting),
// @Group: MESSAGE
// @Path: AP_OSD_Setting.cpp
AP_SUBGROUPINFO(message, "MESSAGE", 11, AP_OSD_Screen, AP_OSD_Setting),
// @Group: GSPEED
// @Path: AP_OSD_Setting.cpp
AP_SUBGROUPINFO(gspeed, "GSPEED", 12, AP_OSD_Screen, AP_OSD_Setting),
// @Group: HORIZON
// @Path: AP_OSD_Setting.cpp
AP_SUBGROUPINFO(horizon, "HORIZON", 13, AP_OSD_Screen, AP_OSD_Setting),
// @Group: HOME
// @Path: AP_OSD_Setting.cpp
AP_SUBGROUPINFO(home, "HOME", 14, AP_OSD_Screen, AP_OSD_Setting),
//@Group: HEADING
//@Path: AP_OSD_Setting.cpp
AP_SUBGROUPINFO(heading, "HEADING", 15, AP_OSD_Screen, AP_OSD_Setting),
//@Group: THROTTLE
//@Path: AP_OSD_Setting.cpp
AP_SUBGROUPINFO(throttle, "THROTTLE", 16, AP_OSD_Screen, AP_OSD_Setting),
//@Group: COMPASS
//@Path: AP_OSD_Setting.cpp
AP_SUBGROUPINFO(compass, "COMPASS", 17, AP_OSD_Screen, AP_OSD_Setting),
//@Group: WIND
//@Path: AP_OSD_Setting.cpp
AP_SUBGROUPINFO(wind, "WIND", 18, AP_OSD_Screen, AP_OSD_Setting),
//@Group: ASPEED
//@Path: AP_OSD_Setting.cpp
AP_SUBGROUPINFO(aspeed, "ASPEED", 19, AP_OSD_Screen, AP_OSD_Setting),
//@Group: VSPEED
//@Path: AP_OSD_Setting.cpp
AP_SUBGROUPINFO(vspeed, "VSPEED", 20, AP_OSD_Screen, AP_OSD_Setting),
#ifdef HAVE_AP_BLHELI_SUPPORT
// @Group: BLHTEMP
// @Path: AP_OSD_Setting.cpp
AP_SUBGROUPINFO(blh_temp, "BLHTEMP", 21, AP_OSD_Screen, AP_OSD_Setting),
// @Group: BLHRPM
// @Path: AP_OSD_Setting.cpp
AP_SUBGROUPINFO(blh_rpm, "BLHRPM", 22, AP_OSD_Screen, AP_OSD_Setting),
// @Group: BLHAMPS
// @Path: AP_OSD_Setting.cpp
AP_SUBGROUPINFO(blh_amps, "BLHAMPS", 23, AP_OSD_Screen, AP_OSD_Setting),
#endif
// @Group: GPSLAT
// @Path: AP_OSD_Setting.cpp
AP_SUBGROUPINFO(gps_latitude, "GPSLAT", 24, AP_OSD_Screen, AP_OSD_Setting),
// @Group: GPSLONG
// @Path: AP_OSD_Setting.cpp
AP_SUBGROUPINFO(gps_longitude, "GPSLONG", 25, AP_OSD_Screen, AP_OSD_Setting),
AP_GROUPEND
};
// constructor
AP_OSD_Screen::AP_OSD_Screen()
{
}
//Symbols
#define SYM_M 0xB9
#define SYM_KM 0xBA
#define SYM_FT 0x0F
#define SYM_MI 0xBB
#define SYM_ALT_M 0xB1
#define SYM_ALT_FT 0xB3
#define SYM_BATT_FULL 0x90
#define SYM_RSSI 0x01
#define SYM_VOLT 0x06
#define SYM_AMP 0x9A
#define SYM_MAH 0x07
#define SYM_MS 0x9F
#define SYM_FS 0x99
#define SYM_KMH 0xA1
#define SYM_MPH 0xB0
#define SYM_DEGR 0xA8
#define SYM_PCNT 0x25
#define SYM_RPM 0xE0
#define SYM_ASPD 0xE1
#define SYM_GSPD 0xE2
#define SYM_WSPD 0xE3
#define SYM_VSPD 0xE4
#define SYM_WPNO 0xE5
#define SYM_WPDIR 0xE6
#define SYM_WPDST 0xE7
#define SYM_FTMIN 0xE8
#define SYM_FTSEC 0x99
#define SYM_SAT_L 0x1E
#define SYM_SAT_R 0x1F
#define SYM_HOME 0xBF
#define SYM_WIND 0x16
#define SYM_ARROW_START 0x60
#define SYM_ARROW_COUNT 16
#define SYM_AH_START 0x80
#define SYM_AH_COUNT 9
#define SYM_AH_CENTER_LINE_LEFT 0x26
#define SYM_AH_CENTER_LINE_RIGHT 0x27
#define SYM_AH_CENTER 0x7E
#define SYM_HEADING_N 0x18
#define SYM_HEADING_S 0x19
#define SYM_HEADING_E 0x1A
#define SYM_HEADING_W 0x1B
#define SYM_HEADING_DIVIDED_LINE 0x1C
#define SYM_HEADING_LINE 0x1D
#define SYM_UP_UP 0xA2
#define SYM_UP 0xA3
#define SYM_DOWN 0xA4
#define SYM_DOWN_DOWN 0xA5
#define SYM_DEGREES_C 0x0E
#define SYM_DEGREES_F 0x0D
#define SYM_GPS_LAT 0xA6
#define SYM_GPS_LONG 0xA7
void AP_OSD_Screen::set_backend(AP_OSD_Backend *_backend)
{
backend = _backend;
osd = _backend->get_osd();
};
bool AP_OSD_Screen::check_option(uint32_t option)
{
return (osd->options & option) != 0;
}
char AP_OSD_Screen::u_icon(uint16_t unit)
{
static const char icons[UNIT_LAST][AP_OSD::UNITS_LAST] = {
{(char)SYM_ALT_M, (char)SYM_ALT_FT}, //ALTITUDE
{(char)SYM_KMH, (char)SYM_MPH}, //SPEED
{(char)SYM_MS, (char)SYM_FS}, //VSPEED
{(char)SYM_M, (char)SYM_FT}, //DISTANCE
{(char)SYM_KM, (char)SYM_MI}, //DISTANCE_LONG
{(char)SYM_DEGREES_C, (char)SYM_DEGREES_F}//TEMPERATURE
};
return icons[unit][osd->units];
}
float AP_OSD_Screen::u_scale(uint16_t unit, float value)
{
static const float scale[UNIT_LAST][AP_OSD::UNITS_LAST] = {
{1.0f, 3.28084f}, //ALTITUDE
{3.6f, 2.23694f}, //SPEED
{1.0f, 3.28084f}, //VSPEED
{1.0f, 3.28084f}, //DISTANCE
{1.0f/1000.0f, 1.0f/1609.34f},//DISTANCE_LONG
{1.0f, 1.8f} //TEMPERATURE
};
static const float offset[UNIT_LAST][AP_OSD::UNITS_LAST] = {
{0.0f, 0.0f}, //ALTITUDE
{0.0f, 0.0f}, //SPEED
{0.0f, 0.0f}, //VSPEED
{0.0f, 0.0f}, //DISTANCE
{0.0f, 0.0f}, //DISTANCE_LONG
{0.0f, 32.0f}, //TEMPERATURE
};
return value * scale[unit][osd->units] + offset[unit][osd->units];
}
void AP_OSD_Screen::draw_altitude(uint8_t x, uint8_t y)
{
float alt;
AP::ahrs().get_relative_position_D_home(alt);
alt = -alt;
backend->write(x, y, false, "%4d%c", (int)u_scale(ALTITUDE, alt), u_icon(ALTITUDE));
}
void AP_OSD_Screen::draw_bat_volt(uint8_t x, uint8_t y)
{
AP_BattMonitor &battery = AP_BattMonitor::battery();
uint8_t pct = battery.capacity_remaining_pct();
uint8_t p = (100 - pct) / 16.6;
float v = battery.voltage();
backend->write(x,y, v < osd->warn_batvolt, "%c%2.1f%c", SYM_BATT_FULL + p, v, SYM_VOLT);
}
void AP_OSD_Screen::draw_rssi(uint8_t x, uint8_t y)
{
AP_RSSI *ap_rssi = AP_RSSI::get_instance();
if (ap_rssi) {
int rssiv = ap_rssi->read_receiver_rssi_uint8();
rssiv = (rssiv * 99) / 255;
backend->write(x, y, rssiv < osd->warn_rssi, "%c%2d", SYM_RSSI, rssiv);
}
}
void AP_OSD_Screen::draw_current(uint8_t x, uint8_t y)
{
AP_BattMonitor &battery = AP_BattMonitor::battery();
float amps = battery.current_amps();
backend->write(x, y, false, "%2.1f%c", amps, SYM_AMP);
}
void AP_OSD_Screen::draw_fltmode(uint8_t x, uint8_t y)
{
AP_Notify * notify = AP_Notify::instance();
if (notify) {
backend->write(x, y, notify->get_flight_mode_str());
}
}
void AP_OSD_Screen::draw_sats(uint8_t x, uint8_t y)
{
AP_GPS & gps = AP::gps();
int nsat = gps.num_sats();
backend->write(x, y, nsat < osd->warn_nsat , "%c%c%2d", SYM_SAT_L, SYM_SAT_R, nsat);
}
void AP_OSD_Screen::draw_batused(uint8_t x, uint8_t y)
{
AP_BattMonitor &battery = AP_BattMonitor::battery();
backend->write(x,y, false, "%4d%c", (int)battery.consumed_mah(), SYM_MAH);
}
//Autoscroll message is the same as in minimosd-extra.
//Thanks to night-ghost for the approach.
void AP_OSD_Screen::draw_message(uint8_t x, uint8_t y)
{
AP_Notify * notify = AP_Notify::instance();
if (notify) {
uint32_t visible_time = AP_HAL::millis() - notify->get_text_updated_millis();
if (visible_time < message_show_time_ms) {
char buffer[NOTIFY_TEXT_BUFFER_SIZE];
strncpy(buffer, notify->get_text(), sizeof(buffer));
int16_t len = strnlen(buffer, sizeof(buffer));
//converted to uppercase,
//because we do not have small letter chars inside used font
for (int16_t i=0; i<len; i++) {
buffer[i] = toupper(buffer[i]);
}
int16_t start_position = 0;
//scroll if required
//scroll pattern: wait, scroll to the left, wait, scroll to the right
if (len > message_visible_width) {
int16_t chars_to_scroll = len - message_visible_width;
int16_t total_cycles = 2*message_scroll_delay + 2*chars_to_scroll;
int16_t current_cycle = (visible_time / message_scroll_time_ms) % total_cycles;
//calculate scroll start_position
if (current_cycle < total_cycles/2) {
//move to the left
start_position = current_cycle - message_scroll_delay;
} else {
//move to the right
start_position = total_cycles - current_cycle;
}
start_position = constrain_int16(start_position, 0, chars_to_scroll);
int16_t end_position = start_position + message_visible_width;
//ensure array boundaries
start_position = MIN(start_position, int(sizeof(buffer)-1));
end_position = MIN(end_position, int(sizeof(buffer)-1));
//trim invisible part
buffer[end_position] = 0;
}
backend->write(x, y, buffer + start_position);
}
}
}
void AP_OSD_Screen::draw_speed_vector(uint8_t x, uint8_t y,Vector2f v, int32_t yaw)
{
float v_length = v.length();
char arrow = SYM_ARROW_START;
if (v_length > 1.0f) {
int32_t angle = wrap_360_cd(DEGX100 * atan2f(v.y, v.x) - yaw);
int32_t interval = 36000 / SYM_ARROW_COUNT;
arrow = SYM_ARROW_START + ((angle + interval / 2) / interval) % SYM_ARROW_COUNT;
}
backend->write(x, y, false, "%c%3d%c", arrow, (int)u_scale(SPEED, v_length), u_icon(SPEED));
}
void AP_OSD_Screen::draw_gspeed(uint8_t x, uint8_t y)
{
AP_AHRS &ahrs = AP::ahrs();
Vector2f v = ahrs.groundspeed_vector();
backend->write(x, y, false, "%c", SYM_GSPD);
draw_speed_vector(x + 1, y, v, ahrs.yaw_sensor);
}
//Thanks to betaflight/inav for simple and clean artificial horizon visual design
void AP_OSD_Screen::draw_horizon(uint8_t x, uint8_t y)
{
AP_AHRS &ahrs = AP::ahrs();
float roll = ahrs.roll;
float pitch = -ahrs.pitch;
//inverted roll AH
if (check_option(AP_OSD::OPTION_INVERTED_AH_ROLL)) {
roll = -roll;
}
roll = constrain_float(roll, -ah_max_roll, ah_max_roll);
pitch = constrain_float(pitch, -ah_max_pitch, ah_max_pitch);
for (int dx = -4; dx <= 4; dx++) {
float fy = dx * roll + pitch * ah_pitch_rad_to_char + 0.5f;
int dy = floorf(fy);
char c = (fy - dy) * SYM_AH_COUNT;
//chars in font in reversed order
c = SYM_AH_START + ((SYM_AH_COUNT - 1) - c);
if (dy >= -4 && dy <= 4) {
backend->write(x + dx, y - dy, false, "%c", c);
}
}
backend->write(x-1,y, false, "%c%c%c", SYM_AH_CENTER_LINE_LEFT, SYM_AH_CENTER, SYM_AH_CENTER_LINE_RIGHT);
}
void AP_OSD_Screen::draw_distance(uint8_t x, uint8_t y, float distance)
{
char unit_icon = u_icon(DISTANCE);
float distance_scaled = u_scale(DISTANCE, distance);
const char *fmt = "%4.0f%c";
if (distance_scaled > 9999.0f) {
distance_scaled = u_scale(DISTANCE_LONG, distance);
unit_icon= u_icon(DISTANCE_LONG);
//try to pack as many useful info as possible
if (distance_scaled<9.0f) {
fmt = "%1.3f%c";
} else if (distance_scaled < 99.0f) {
fmt = "%2.2f%c";
} else if (distance_scaled < 999.0f) {
fmt = "%3.1f%c";
} else {
fmt = "%4.0f%c";
}
}
backend->write(x, y, false, fmt, distance_scaled, unit_icon);
}
void AP_OSD_Screen::draw_home(uint8_t x, uint8_t y)
{
AP_AHRS &ahrs = AP::ahrs();
Location loc;
if (ahrs.get_position(loc) && ahrs.home_is_set()) {
const Location &home_loc = ahrs.get_home();
float distance = get_distance(home_loc, loc);
int32_t angle = wrap_360_cd(get_bearing_cd(loc, home_loc) - ahrs.yaw_sensor);
int32_t interval = 36000 / SYM_ARROW_COUNT;
if (distance < 2.0f) {
//avoid fast rotating arrow at small distances
angle = 0;
}
char arrow = SYM_ARROW_START + ((angle + interval / 2) / interval) % SYM_ARROW_COUNT;
backend->write(x, y, false, "%c%c", SYM_HOME, arrow);
draw_distance(x+2, y, distance);
} else {
backend->write(x, y, true, "%c", SYM_HOME);
}
}
void AP_OSD_Screen::draw_heading(uint8_t x, uint8_t y)
{
AP_AHRS &ahrs = AP::ahrs();
uint16_t yaw = ahrs.yaw_sensor / 100;
backend->write(x, y, false, "%3d%c", yaw, SYM_DEGR);
}
void AP_OSD_Screen::draw_throttle(uint8_t x, uint8_t y)
{
backend->write(x, y, false, "%3d%c", gcs().get_hud_throttle(), SYM_PCNT);
}
//Thanks to betaflight/inav for simple and clean compass visual design
void AP_OSD_Screen::draw_compass(uint8_t x, uint8_t y)
{
const int8_t total_sectors = 16;
static const char compass_circle[total_sectors] = {
SYM_HEADING_N,
SYM_HEADING_LINE,
SYM_HEADING_DIVIDED_LINE,
SYM_HEADING_LINE,
SYM_HEADING_E,
SYM_HEADING_LINE,
SYM_HEADING_DIVIDED_LINE,
SYM_HEADING_LINE,
SYM_HEADING_S,
SYM_HEADING_LINE,
SYM_HEADING_DIVIDED_LINE,
SYM_HEADING_LINE,
SYM_HEADING_W,
SYM_HEADING_LINE,
SYM_HEADING_DIVIDED_LINE,
SYM_HEADING_LINE,
};
AP_AHRS &ahrs = AP::ahrs();
int32_t yaw = ahrs.yaw_sensor;
int32_t interval = 36000 / total_sectors;
int8_t center_sector = ((yaw + interval / 2) / interval) % total_sectors;
for (int8_t i = -4; i <= 4; i++) {
int8_t sector = center_sector + i;
sector = (sector + total_sectors) % total_sectors;
backend->write(x + i, y, false, "%c", compass_circle[sector]);
}
}
void AP_OSD_Screen::draw_wind(uint8_t x, uint8_t y)
{
AP_AHRS &ahrs = AP::ahrs();
Vector3f v = ahrs.wind_estimate();
if (check_option(AP_OSD::OPTION_INVERTED_WIND)) {
v = -v;
}
backend->write(x, y, false, "%c", SYM_WSPD);
draw_speed_vector(x + 1, y, Vector2f(v.x, v.y), ahrs.yaw_sensor);
}
void AP_OSD_Screen::draw_aspeed(uint8_t x, uint8_t y)
{
float aspd = 0.0f;
bool have_estimate = AP::ahrs().airspeed_estimate(&aspd);
if (have_estimate) {
backend->write(x, y, false, "%c%4d%c", SYM_ASPD, (int)u_scale(SPEED, aspd), u_icon(SPEED));
} else {
backend->write(x, y, false, "%c ---%c", SYM_ASPD, u_icon(SPEED));
}
}
void AP_OSD_Screen::draw_vspeed(uint8_t x, uint8_t y)
{
Vector3f v;
AP::ahrs().get_velocity_NED(v);
float vspd = -v.z;
char sym;
if (vspd > 3.0f) {
sym = SYM_UP_UP;
} else if (vspd >=0.0f) {
sym = SYM_UP;
} else if (vspd >= -3.0f) {
sym = SYM_DOWN;
} else {
sym = SYM_DOWN_DOWN;
}
vspd = fabsf(vspd);
backend->write(x, y, false, "%c%2d%c", sym, (int)u_scale(VSPEED, vspd), u_icon(VSPEED));
}
#ifdef HAVE_AP_BLHELI_SUPPORT
void AP_OSD_Screen::draw_blh_temp(uint8_t x, uint8_t y)
{
AP_BLHeli *blheli = AP_BLHeli::get_singleton();
if (blheli) {
AP_BLHeli::telem_data td;
// first parameter is index into array of ESC's. Hardwire to zero (first) for now.
if (!blheli->get_telem_data(0, td)) {
return;
}
// AP_BLHeli & blh = AP_BLHeli::AP_BLHeli();
uint8_t esc_temp = td.temperature;
backend->write(x, y, false, "%3d%c", (int)u_scale(TEMPERATURE, esc_temp), u_icon(TEMPERATURE));
}
}
void AP_OSD_Screen::draw_blh_rpm(uint8_t x, uint8_t y)
{
AP_BLHeli *blheli = AP_BLHeli::get_singleton();
if (blheli) {
AP_BLHeli::telem_data td;
// first parameter is index into array of ESC's. Hardwire to zero (first) for now.
if (!blheli->get_telem_data(0, td)) {
return;
}
int esc_rpm = td.rpm * 14; // hard-wired assumption for now that motor has 14 poles, so multiply eRPM * 14 to get motor RPM.
backend->write(x, y, false, "%5d%c", esc_rpm, SYM_RPM);
}
}
void AP_OSD_Screen::draw_blh_amps(uint8_t x, uint8_t y)
{
AP_BLHeli *blheli = AP_BLHeli::get_singleton();
if (blheli) {
AP_BLHeli::telem_data td;
// first parameter is index into array of ESC's. Hardwire to zero (first) for now.
if (!blheli->get_telem_data(0, td)) {
return;
}
float esc_amps = td.current;
backend->write(x, y, false, "%4.1f%c", esc_amps, SYM_AMP);
}
}
#endif //HAVE_AP_BLHELI_SUPPORT
void AP_OSD_Screen::draw_gps_latitude(uint8_t x, uint8_t y)
{
AP_GPS & gps = AP::gps();
const Location &loc = gps.location(); // loc.lat and loc.lng
int32_t dec_portion, frac_portion;
int32_t abs_lat = labs(loc.lat);
dec_portion = loc.lat / 10000000L;
frac_portion = abs_lat - labs(dec_portion)*10000000UL;
backend->write(x, y, false, "%c%4ld.%07ld", SYM_GPS_LAT, (long)dec_portion,(long)frac_portion);
}
void AP_OSD_Screen::draw_gps_longitude(uint8_t x, uint8_t y)
{
AP_GPS & gps = AP::gps();
const Location &loc = gps.location(); // loc.lat and loc.lng
int32_t dec_portion, frac_portion;
int32_t abs_lon = labs(loc.lng);
dec_portion = loc.lng / 10000000L;
frac_portion = abs_lon - labs(dec_portion)*10000000UL;
backend->write(x, y, false, "%c%4ld.%07ld", SYM_GPS_LONG, (long)dec_portion,(long)frac_portion);
}
#define DRAW_SETTING(n) if (n.enabled) draw_ ## n(n.xpos, n.ypos)
void AP_OSD_Screen::draw(void)
{
if (!enabled || !backend) {
return;
}
//Note: draw order should be optimized.
//Big and less important items should be drawn first,
//so they will not overwrite more important ones.
DRAW_SETTING(message);
DRAW_SETTING(horizon);
DRAW_SETTING(compass);
DRAW_SETTING(altitude);
DRAW_SETTING(bat_volt);
DRAW_SETTING(rssi);
DRAW_SETTING(current);
DRAW_SETTING(batused);
DRAW_SETTING(sats);
DRAW_SETTING(fltmode);
DRAW_SETTING(gspeed);
DRAW_SETTING(aspeed);
DRAW_SETTING(vspeed);
DRAW_SETTING(throttle);
DRAW_SETTING(heading);
DRAW_SETTING(wind);
DRAW_SETTING(home);
#ifdef HAVE_AP_BLHELI_SUPPORT
DRAW_SETTING(blh_temp);
DRAW_SETTING(blh_rpm);
DRAW_SETTING(blh_amps);
#endif
DRAW_SETTING(gps_latitude);
DRAW_SETTING(gps_longitude);
}