ardupilot/libraries/AP_HAL_ESP32/Scheduler.cpp
Buzz bb8998bdef AP_HAL_ESP32: new HAL layer for esp32
see libraries/AP_HAL_ESP32/README.md for more.

Author: Charles Villard <charlesvillard10@gmail.com>
Author: Buzz <davidbuzz@gmail.com>
2021-11-01 17:40:31 +11:00

501 lines
13 KiB
C++

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_HAL_ESP32/Scheduler.h"
#include "AP_HAL_ESP32/RCInput.h"
#include "AP_HAL_ESP32/AnalogIn.h"
#include "AP_Math/AP_Math.h"
#include "SdCard.h"
#include "Profile.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "soc/rtc_wdt.h"
#include "esp_int_wdt.h"
#include "esp_task_wdt.h"
#include <AP_HAL/AP_HAL.h>
#include <stdio.h>
//#define SCHEDULERDEBUG 1
using namespace ESP32;
extern const AP_HAL::HAL& hal;
bool Scheduler::_initialized = true;
Scheduler::Scheduler()
{
_initialized = false;
}
void disableCore0WDT()
{
TaskHandle_t idle_0 = xTaskGetIdleTaskHandleForCPU(0);
if (idle_0 == NULL || esp_task_wdt_delete(idle_0) != ESP_OK) {
//print("Failed to remove Core 0 IDLE task from WDT");
}
}
void disableCore1WDT()
{
TaskHandle_t idle_1 = xTaskGetIdleTaskHandleForCPU(1);
if (idle_1 == NULL || esp_task_wdt_delete(idle_1) != ESP_OK) {
//print("Failed to remove Core 1 IDLE task from WDT");
}
}
void Scheduler::init()
{
#ifdef SCHEDDEBUG
printf("%s:%d \n", __PRETTY_FUNCTION__, __LINE__);
#endif
//xTaskCreatePinnedToCore(_main_thread, "APM_MAIN", Scheduler::MAIN_SS, this, Scheduler::MAIN_PRIO, &_main_task_handle, 0);
xTaskCreate(_main_thread, "APM_MAIN", Scheduler::MAIN_SS, this, Scheduler::MAIN_PRIO, &_main_task_handle);
xTaskCreate(_timer_thread, "APM_TIMER", TIMER_SS, this, TIMER_PRIO, &_timer_task_handle);
xTaskCreate(_rcout_thread, "APM_RCOUT", RCOUT_SS, this, RCOUT_PRIO, &_rcout_task_handle);
xTaskCreate(_rcin_thread, "APM_RCIN", RCIN_SS, this, RCIN_PRIO, &_rcin_task_handle);
xTaskCreate(_uart_thread, "APM_UART", UART_SS, this, UART_PRIO, &_uart_task_handle);
xTaskCreate(_io_thread, "APM_IO", IO_SS, this, IO_PRIO, &_io_task_handle);
xTaskCreate(_storage_thread, "APM_STORAGE", STORAGE_SS, this, STORAGE_PRIO, &_storage_task_handle); //no actual flash writes without this, storage kinda appears to work, but does an erase on every boot and params don't persist over reset etc.
// xTaskCreate(_print_profile, "APM_PROFILE", IO_SS, this, IO_PRIO, nullptr);
//disableCore0WDT();
//disableCore1WDT();
}
template <typename T>
void executor(T oui)
{
oui();
}
void Scheduler::thread_create_trampoline(void *ctx)
{
AP_HAL::MemberProc *t = (AP_HAL::MemberProc *)ctx;
(*t)();
free(t);
}
/*
create a new thread
*/
bool Scheduler::thread_create(AP_HAL::MemberProc proc, const char *name, uint32_t stack_size, priority_base base, int8_t priority)
{
#ifdef SCHEDDEBUG
printf("%s:%d \n", __PRETTY_FUNCTION__, __LINE__);
#endif
// take a copy of the MemberProc, it is freed after thread exits
AP_HAL::MemberProc *tproc = (AP_HAL::MemberProc *)calloc(1, sizeof(proc));
if (!tproc) {
return false;
}
*tproc = proc;
uint8_t thread_priority = IO_PRIO;
static const struct {
priority_base base;
uint8_t p;
} priority_map[] = {
{ PRIORITY_BOOST, IO_PRIO},
{ PRIORITY_MAIN, MAIN_PRIO},
{ PRIORITY_SPI, SPI_PRIORITY},
{ PRIORITY_I2C, I2C_PRIORITY},
{ PRIORITY_CAN, IO_PRIO},
{ PRIORITY_TIMER, TIMER_PRIO},
{ PRIORITY_RCIN, RCIN_PRIO},
{ PRIORITY_IO, IO_PRIO},
{ PRIORITY_UART, UART_PRIO},
{ PRIORITY_STORAGE, STORAGE_PRIO},
{ PRIORITY_SCRIPTING, IO_PRIO},
};
for (uint8_t i=0; i<ARRAY_SIZE(priority_map); i++) {
if (priority_map[i].base == base) {
#ifdef SCHEDDEBUG
printf("%s:%d \n", __PRETTY_FUNCTION__, __LINE__);
#endif
thread_priority = constrain_int16(priority_map[i].p + priority, 1, 25);
break;
}
}
void* xhandle;
BaseType_t xReturned = xTaskCreate(thread_create_trampoline, name, stack_size, tproc, thread_priority, &xhandle);
if (xReturned != pdPASS) {
free(tproc);
return false;
}
return true;
}
void Scheduler::delay(uint16_t ms)
{
uint64_t start = AP_HAL::micros64();
while ((AP_HAL::micros64() - start)/1000 < ms) {
delay_microseconds(1000);
if (_min_delay_cb_ms <= ms) {
if (in_main_thread()) {
call_delay_cb();
}
}
}
}
void Scheduler::delay_microseconds(uint16_t us)
{
if (us < 100) {
ets_delay_us(us);
} else { // Minimum delay for FreeRTOS is 1ms
uint32_t tick = portTICK_PERIOD_MS * 1000;
vTaskDelay((us+tick-1)/tick);
}
}
void Scheduler::register_timer_process(AP_HAL::MemberProc proc)
{
#ifdef SCHEDDEBUG
printf("%s:%d \n", __PRETTY_FUNCTION__, __LINE__);
#endif
for (uint8_t i = 0; i < _num_timer_procs; i++) {
if (_timer_proc[i] == proc) {
return;
}
}
if (_num_timer_procs >= ESP32_SCHEDULER_MAX_TIMER_PROCS) {
printf("Out of timer processes\n");
return;
}
_timer_sem.take_blocking();
_timer_proc[_num_timer_procs] = proc;
_num_timer_procs++;
_timer_sem.give();
}
void Scheduler::register_io_process(AP_HAL::MemberProc proc)
{
#ifdef SCHEDDEBUG
printf("%s:%d \n", __PRETTY_FUNCTION__, __LINE__);
#endif
_io_sem.take_blocking();
for (uint8_t i = 0; i < _num_io_procs; i++) {
if (_io_proc[i] == proc) {
_io_sem.give();
return;
}
}
if (_num_io_procs < ESP32_SCHEDULER_MAX_IO_PROCS) {
_io_proc[_num_io_procs] = proc;
_num_io_procs++;
} else {
printf("Out of IO processes\n");
}
_io_sem.give();
}
void Scheduler::register_timer_failsafe(AP_HAL::Proc failsafe, uint32_t period_us)
{
_failsafe = failsafe;
}
void Scheduler::reboot(bool hold_in_bootloader)
{
printf("Restarting now...\n");
hal.rcout->force_safety_on();
unmount_sdcard();
esp_restart();
}
bool Scheduler::in_main_thread() const
{
return _main_task_handle == xTaskGetCurrentTaskHandle();
}
void Scheduler::set_system_initialized()
{
#ifdef SCHEDDEBUG
printf("%s:%d \n", __PRETTY_FUNCTION__, __LINE__);
#endif
if (_initialized) {
AP_HAL::panic("PANIC: scheduler::system_initialized called more than once");
}
_initialized = true;
}
bool Scheduler::is_system_initialized()
{
return _initialized;
}
void Scheduler::_timer_thread(void *arg)
{
#ifdef SCHEDDEBUG
printf("%s:%d start\n", __PRETTY_FUNCTION__, __LINE__);
#endif
Scheduler *sched = (Scheduler *)arg;
while (!_initialized) {
sched->delay_microseconds(1000);
}
#ifdef SCHEDDEBUG
printf("%s:%d initialised\n", __PRETTY_FUNCTION__, __LINE__);
#endif
while (true) {
sched->delay_microseconds(1000);
sched->_run_timers();
//analog in
#ifndef HAL_DISABLE_ADC_DRIVER
((AnalogIn*)hal.analogin)->_timer_tick();
#endif
}
}
void Scheduler::_rcout_thread(void* arg)
{
Scheduler *sched = (Scheduler *)arg;
while (!_initialized) {
sched->delay_microseconds(1000);
}
while (true) {
sched->delay_microseconds(4000);
// process any pending RC output requests
hal.rcout->timer_tick();
}
}
void Scheduler::_run_timers()
{
#ifdef SCHEDULERDEBUG
printf("%s:%d start \n", __PRETTY_FUNCTION__, __LINE__);
#endif
if (_in_timer_proc) {
return;
}
#ifdef SCHEDULERDEBUG
printf("%s:%d _in_timer_proc \n", __PRETTY_FUNCTION__, __LINE__);
#endif
_in_timer_proc = true;
int num_procs = 0;
_timer_sem.take_blocking();
num_procs = _num_timer_procs;
_timer_sem.give();
// now call the timer based drivers
for (int i = 0; i < num_procs; i++) {
if (_timer_proc[i]) {
_timer_proc[i]();
}
}
// and the failsafe, if one is setup
if (_failsafe != nullptr) {
_failsafe();
}
_in_timer_proc = false;
}
void Scheduler::_rcin_thread(void *arg)
{
Scheduler *sched = (Scheduler *)arg;
while (!_initialized) {
sched->delay_microseconds(20000);
}
hal.rcin->init();
while (true) {
sched->delay_microseconds(1000);
((RCInput *)hal.rcin)->_timer_tick();
}
}
void Scheduler::_run_io(void)
{
#ifdef SCHEDULERDEBUG
printf("%s:%d start \n", __PRETTY_FUNCTION__, __LINE__);
#endif
if (_in_io_proc) {
return;
}
#ifdef SCHEDULERDEBUG
printf("%s:%d initialised \n", __PRETTY_FUNCTION__, __LINE__);
#endif
_in_io_proc = true;
int num_procs = 0;
_io_sem.take_blocking();
num_procs = _num_io_procs;
_io_sem.give();
// now call the IO based drivers
for (int i = 0; i < num_procs; i++) {
if (_io_proc[i]) {
_io_proc[i]();
}
}
_in_io_proc = false;
}
void Scheduler::_io_thread(void* arg)
{
#ifdef SCHEDDEBUG
printf("%s:%d start \n", __PRETTY_FUNCTION__, __LINE__);
#endif
mount_sdcard();
Scheduler *sched = (Scheduler *)arg;
while (!sched->_initialized) {
sched->delay_microseconds(1000);
}
#ifdef SCHEDDEBUG
printf("%s:%d initialised \n", __PRETTY_FUNCTION__, __LINE__);
#endif
uint32_t last_sd_start_ms = AP_HAL::millis();
while (true) {
sched->delay_microseconds(1000);
// run registered IO processes
sched->_run_io();
if (!hal.util->get_soft_armed()) {
// if sdcard hasn't mounted then retry it every 3s in the IO
// thread when disarmed
uint32_t now = AP_HAL::millis();
if (now - last_sd_start_ms > 3000) {
last_sd_start_ms = now;
sdcard_retry();
}
}
}
}
void Scheduler::_storage_thread(void* arg)
{
#ifdef SCHEDDEBUG
printf("%s:%d start \n", __PRETTY_FUNCTION__, __LINE__);
#endif
Scheduler *sched = (Scheduler *)arg;
while (!_initialized) {
sched->delay_microseconds(10000);
}
#ifdef SCHEDDEBUG
printf("%s:%d initialised \n", __PRETTY_FUNCTION__, __LINE__);
#endif
while (true) {
sched->delay_microseconds(1000);
// process any pending storage writes
hal.storage->_timer_tick();
//print_profile();
}
}
void Scheduler::_print_profile(void* arg)
{
Scheduler *sched = (Scheduler *)arg;
while (!sched->_initialized) {
sched->delay_microseconds(10000);
}
while (true) {
sched->delay(10000);
print_profile();
}
}
void Scheduler::_uart_thread(void *arg)
{
#ifdef SCHEDDEBUG
printf("%s:%d start \n", __PRETTY_FUNCTION__, __LINE__);
#endif
Scheduler *sched = (Scheduler *)arg;
while (!_initialized) {
sched->delay_microseconds(2000);
}
#ifdef SCHEDDEBUG
printf("%s:%d initialised\n", __PRETTY_FUNCTION__, __LINE__);
#endif
while (true) {
sched->delay_microseconds(1000);
for (uint8_t i=0; i<hal.num_serial; i++) {
hal.serial(i)->_timer_tick();
}
hal.console->_timer_tick();
}
}
// get the active main loop rate
uint16_t Scheduler::get_loop_rate_hz(void)
{
if (_active_loop_rate_hz == 0) {
_active_loop_rate_hz = _loop_rate_hz;
}
return _active_loop_rate_hz;
}
// once every 60 seconds, print some stats...
void Scheduler::print_stats(void)
{
static int64_t last_run = 0;
if (AP_HAL::millis64() - last_run > 60000) {
char buffer[1024];
vTaskGetRunTimeStats(buffer);
printf("\n\n%s\n", buffer);
heap_caps_print_heap_info(0);
last_run = AP_HAL::millis64();
}
// printf("loop_rate_hz: %d",get_loop_rate_hz());
}
void IRAM_ATTR Scheduler::_main_thread(void *arg)
{
#ifdef SCHEDDEBUG
printf("%s:%d start\n", __PRETTY_FUNCTION__, __LINE__);
#endif
Scheduler *sched = (Scheduler *)arg;
hal.serial(0)->begin(115200);
hal.serial(1)->begin(57600);
hal.serial(2)->begin(57600);
//hal.uartC->begin(921600);
hal.serial(3)->begin(115200);
#ifndef HAL_DISABLE_ADC_DRIVER
hal.analogin->init();
#endif
hal.rcout->init();
sched->callbacks->setup();
sched->set_system_initialized();
#ifdef SCHEDDEBUG
printf("%s:%d initialised\n", __PRETTY_FUNCTION__, __LINE__);
#endif
while (true) {
sched->callbacks->loop();
sched->delay_microseconds(250);
sched->print_stats(); // only runs every 60 seconds.
}
}