ardupilot/libraries/AP_Airspeed/AP_Airspeed_NMEA.cpp
Andrew Tridgell ca1508b02e AP_Airspeed: added DEVID parameters for airspeed
this makes log analysis easier
2021-07-12 17:14:59 +10:00

221 lines
6.2 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* NMEA Sensor driver for VHW ans MTW messages over Serial
* https://gpsd.gitlab.io/gpsd/NMEA.html#_vhw_water_speed_and_heading
* https://gpsd.gitlab.io/gpsd/NMEA.html#_mtw_mean_temperature_of_water
*/
#include <AP_Vehicle/AP_Vehicle.h>
#if APM_BUILD_TYPE(APM_BUILD_Rover) || APM_BUILD_TYPE(APM_BUILD_ArduSub)
#include "AP_Airspeed_NMEA.h"
#include "AP_Airspeed.h"
#define TIMEOUT_MS 2000
extern const AP_HAL::HAL &hal;
AP_Airspeed_NMEA::AP_Airspeed_NMEA(AP_Airspeed &_frontend, uint8_t _instance) :
AP_Airspeed_Backend(_frontend, _instance)
{
}
bool AP_Airspeed_NMEA::init()
{
const AP_SerialManager& serial_manager = AP::serialmanager();
_uart = serial_manager.find_serial(AP_SerialManager::SerialProtocol_AirSpeed, 0);
if (_uart == nullptr) {
return false;
}
set_bus_id(AP_HAL::Device::make_bus_id(AP_HAL::Device::BUS_TYPE_SERIAL,0,0,0));
_uart->begin(serial_manager.find_baudrate(AP_SerialManager::SerialProtocol_AirSpeed, 0));
// make sure this sensor cannot be used in the EKF
set_use(0);
// must set use zero offset to pass offset check for health
set_use_zero_offset();
return true;
}
// read the from the sensor
bool AP_Airspeed_NMEA::get_airspeed(float &airspeed)
{
if (_uart == nullptr) {
return false;
}
uint32_t now = AP_HAL::millis();
// read any available lines from the sensor
float sum = 0.0f;
uint16_t count = 0;
int16_t nbytes = _uart->available();
while (nbytes-- > 0) {
char c = _uart->read();
if (decode(c)) {
_last_update_ms = now;
if (_sentence_type == TYPE_VHW) {
sum += _speed;
count++;
} else {
_temp_sum += _temp;
_temp_count++;
}
}
}
if (count == 0) {
// Cant return false because updates are too slow, return previous reading
// Could return false after some timeout, however testing shows that the DST800 just stops sending the message at zero speed
airspeed = _last_speed;
} else {
// return average of all measurements
airspeed = sum / count;
_last_speed = airspeed;
}
return (now - _last_update_ms) < TIMEOUT_MS;
}
// return the current temperature in degrees C
// the main update is done in the get_pressue function
// this just reports the value
bool AP_Airspeed_NMEA::get_temperature(float &temperature)
{
if (_uart == nullptr) {
return false;
}
if (_temp_count == 0) {
temperature = _last_temp;
} else {
// return average of all measurements
temperature = _temp_sum / _temp_count;
_last_temp = temperature;
_temp_count = 0;
_temp_sum = 0;
}
return true;
}
// add a single character to the buffer and attempt to decode
// returns true if a complete sentence was successfully decoded
bool AP_Airspeed_NMEA::decode(char c)
{
switch (c) {
case ',':
// end of a term, add to checksum
_checksum ^= c;
FALLTHROUGH;
case '\r':
case '\n':
case '*':
{
if (!_sentence_done && _sentence_valid) {
// null terminate and decode latest term
_term[_term_offset] = 0;
bool valid_sentence = decode_latest_term();
// move onto next term
_term_number++;
_term_offset = 0;
_term_is_checksum = (c == '*');
return valid_sentence;
}
return false;
}
case '$': // sentence begin
_term_number = 0;
_term_offset = 0;
_checksum = 0;
_term_is_checksum = false;
_sentence_done = false;
_sentence_valid = true;
return false;
}
// ordinary characters are added to term
if (_term_offset < sizeof(_term) - 1) {
_term[_term_offset++] = c;
}
if (!_term_is_checksum) {
_checksum ^= c;
}
return false;
}
// decode the most recently consumed term
// returns true if new sentence has just passed checksum test and is validated
bool AP_Airspeed_NMEA::decode_latest_term()
{
// handle the last term in a message
if (_term_is_checksum) {
_sentence_done = true;
uint8_t nibble_high = 0;
uint8_t nibble_low = 0;
if (!hex_to_uint8(_term[0], nibble_high) || !hex_to_uint8(_term[1], nibble_low)) {
return false;
}
const uint8_t checksum = (nibble_high << 4u) | nibble_low;
return checksum == _checksum;
}
// the first term determines the sentence type
if (_term_number == 0) {
// the first two letters of the NMEA term are the talker ID.
// we accept any two characters here.
// actually expecting YX for MTW and VW for VHW
if (_term[0] < 'A' || _term[0] > 'Z' ||
_term[1] < 'A' || _term[1] > 'Z') {
return false;
}
const char *term_type = &_term[2];
if (strcmp(term_type, "MTW") == 0) {
_sentence_type = TPYE_MTW;
} else if (strcmp(term_type, "VHW") == 0) {
_sentence_type = TYPE_VHW;
} else {
_sentence_valid = false;
}
return false;
}
if (_sentence_type == TPYE_MTW) {
// parse MTW messages
if (_term_number == 1) {
_temp = strtof(_term, NULL);
}
} else if (_sentence_type == TYPE_VHW) {
// parse VHW messages
if (_term_number == 7) {
_speed = strtof(_term, NULL) * KM_PER_HOUR_TO_M_PER_SEC;
}
}
return false;
}
#endif // APM_BUILD_TYPE(APM_BUILD_Rover) || APM_BUILD_TYPE(APM_BUILD_ArduSub)