mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-02 14:13:42 -04:00
334 lines
13 KiB
C++
334 lines
13 KiB
C++
#pragma once
|
|
|
|
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
* AHRS (Attitude Heading Reference System) interface for ArduPilot
|
|
*
|
|
*/
|
|
|
|
#include <AP_Math/AP_Math.h>
|
|
#include <inttypes.h>
|
|
#include <AP_Compass/AP_Compass.h>
|
|
#include <AP_Airspeed/AP_Airspeed.h>
|
|
#include <AP_InertialSensor/AP_InertialSensor.h>
|
|
#include <AP_Param/AP_Param.h>
|
|
#include <AP_Common/Location.h>
|
|
|
|
class OpticalFlow;
|
|
#define AP_AHRS_TRIM_LIMIT 10.0f // maximum trim angle in degrees
|
|
#define AP_AHRS_RP_P_MIN 0.05f // minimum value for AHRS_RP_P parameter
|
|
#define AP_AHRS_YAW_P_MIN 0.05f // minimum value for AHRS_YAW_P parameter
|
|
|
|
enum class GPSUse : uint8_t {
|
|
Disable = 0,
|
|
Enable = 1,
|
|
EnableWithHeight = 2,
|
|
};
|
|
|
|
class AP_AHRS_Backend
|
|
{
|
|
public:
|
|
|
|
// Constructor
|
|
AP_AHRS_Backend() {}
|
|
|
|
// empty virtual destructor
|
|
virtual ~AP_AHRS_Backend() {}
|
|
|
|
CLASS_NO_COPY(AP_AHRS_Backend);
|
|
|
|
// structure to retrieve results from backends:
|
|
struct Estimates {
|
|
float roll_rad;
|
|
float pitch_rad;
|
|
float yaw_rad;
|
|
Matrix3f dcm_matrix;
|
|
Vector3f gyro_estimate;
|
|
Vector3f gyro_drift;
|
|
Vector3f accel_ef[INS_MAX_INSTANCES]; // must be INS_MAX_INSTANCES
|
|
Vector3f accel_ef_blended;
|
|
Vector3f accel_bias;
|
|
};
|
|
|
|
// init sets up INS board orientation
|
|
virtual void init();
|
|
|
|
// return the index of the primary core or -1 if no primary core selected
|
|
virtual int8_t get_primary_core_index() const { return -1; }
|
|
|
|
// get the index of the current primary accelerometer sensor
|
|
virtual uint8_t get_primary_accel_index(void) const {
|
|
return AP::ins().get_primary_accel();
|
|
}
|
|
|
|
// get the index of the current primary gyro sensor
|
|
virtual uint8_t get_primary_gyro_index(void) const {
|
|
return AP::ins().get_primary_gyro();
|
|
}
|
|
|
|
// Methods
|
|
virtual void update() = 0;
|
|
|
|
virtual void get_results(Estimates &results) = 0;
|
|
|
|
// returns false if we fail arming checks, in which case the buffer will be populated with a failure message
|
|
// requires_position should be true if horizontal position configuration should be checked
|
|
virtual bool pre_arm_check(bool requires_position, char *failure_msg, uint8_t failure_msg_len) const = 0;
|
|
|
|
// check all cores providing consistent attitudes for prearm checks
|
|
virtual bool attitudes_consistent(char *failure_msg, const uint8_t failure_msg_len) const { return true; }
|
|
|
|
// see if EKF lane switching is possible to avoid EKF failsafe
|
|
virtual void check_lane_switch(void) {}
|
|
|
|
// check if non-compass sensor is providing yaw. Allows compass pre-arm checks to be bypassed
|
|
virtual bool using_noncompass_for_yaw(void) const { return false; }
|
|
|
|
// check if external nav is providing yaw
|
|
virtual bool using_extnav_for_yaw(void) const { return false; }
|
|
|
|
// request EKF yaw reset to try and avoid the need for an EKF lane switch or failsafe
|
|
virtual void request_yaw_reset(void) {}
|
|
|
|
// set position, velocity and yaw sources to either 0=primary, 1=secondary, 2=tertiary
|
|
virtual void set_posvelyaw_source_set(uint8_t source_set_idx) {}
|
|
|
|
// reset the current gyro drift estimate
|
|
// should be called if gyro offsets are recalculated
|
|
virtual void reset_gyro_drift(void) = 0;
|
|
|
|
// reset the current attitude, used on new IMU calibration
|
|
virtual void reset() = 0;
|
|
|
|
// get our current position estimate. Return true if a position is available,
|
|
// otherwise false. This call fills in lat, lng and alt
|
|
virtual bool get_location(struct Location &loc) const WARN_IF_UNUSED = 0;
|
|
|
|
// get latest altitude estimate above ground level in meters and validity flag
|
|
virtual bool get_hagl(float &height) const WARN_IF_UNUSED { return false; }
|
|
|
|
// return a wind estimation vector, in m/s
|
|
virtual Vector3f wind_estimate(void) const = 0;
|
|
|
|
// return an airspeed estimate if available. return true
|
|
// if we have an estimate
|
|
virtual bool airspeed_estimate(float &airspeed_ret) const WARN_IF_UNUSED { return false; }
|
|
virtual bool airspeed_estimate(uint8_t airspeed_index, float &airspeed_ret) const { return false; }
|
|
|
|
// return a true airspeed estimate (navigation airspeed) if
|
|
// available. return true if we have an estimate
|
|
bool airspeed_estimate_true(float &airspeed_ret) const WARN_IF_UNUSED {
|
|
if (!airspeed_estimate(airspeed_ret)) {
|
|
return false;
|
|
}
|
|
airspeed_ret *= get_EAS2TAS();
|
|
return true;
|
|
}
|
|
|
|
// return estimate of true airspeed vector in body frame in m/s
|
|
// returns false if estimate is unavailable
|
|
virtual bool airspeed_vector_true(Vector3f &vec) const WARN_IF_UNUSED {
|
|
return false;
|
|
}
|
|
|
|
// return a synthetic airspeed estimate (one derived from sensors
|
|
// other than an actual airspeed sensor), if available. return
|
|
// true if we have a synthetic airspeed. ret will not be modified
|
|
// on failure.
|
|
virtual bool synthetic_airspeed(float &ret) const WARN_IF_UNUSED = 0;
|
|
|
|
// get apparent to true airspeed ratio
|
|
float get_EAS2TAS(void) const;
|
|
|
|
// return true if airspeed comes from an airspeed sensor, as
|
|
// opposed to an IMU estimate
|
|
bool airspeed_sensor_enabled(void) const {
|
|
#if AP_AIRSPEED_ENABLED
|
|
const AP_Airspeed *_airspeed = AP::airspeed();
|
|
return _airspeed != nullptr && _airspeed->use() && _airspeed->healthy();
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
// return true if airspeed comes from a specific airspeed sensor, as
|
|
// opposed to an IMU estimate
|
|
bool airspeed_sensor_enabled(uint8_t airspeed_index) const {
|
|
#if AP_AIRSPEED_ENABLED
|
|
const AP_Airspeed *_airspeed = AP::airspeed();
|
|
return _airspeed != nullptr && _airspeed->use(airspeed_index) && _airspeed->healthy(airspeed_index);
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
// return a ground vector estimate in meters/second, in North/East order
|
|
virtual Vector2f groundspeed_vector(void) = 0;
|
|
|
|
// return a ground velocity in meters/second, North/East/Down
|
|
// order. This will only be accurate if have_inertial_nav() is
|
|
// true
|
|
virtual bool get_velocity_NED(Vector3f &vec) const WARN_IF_UNUSED {
|
|
return false;
|
|
}
|
|
|
|
// Get a derivative of the vertical position in m/s which is kinematically consistent with the vertical position is required by some control loops.
|
|
// This is different to the vertical velocity from the EKF which is not always consistent with the vertical position due to the various errors that are being corrected for.
|
|
virtual bool get_vert_pos_rate(float &velocity) const = 0;
|
|
|
|
// returns the estimated magnetic field offsets in body frame
|
|
virtual bool get_mag_field_correction(Vector3f &ret) const WARN_IF_UNUSED {
|
|
return false;
|
|
}
|
|
|
|
virtual bool get_mag_field_NED(Vector3f &vec) const {
|
|
return false;
|
|
}
|
|
|
|
virtual bool get_mag_offsets(uint8_t mag_idx, Vector3f &magOffsets) const {
|
|
return false;
|
|
}
|
|
|
|
//
|
|
virtual bool set_origin(const Location &loc) {
|
|
return false;
|
|
}
|
|
virtual bool get_origin(Location &ret) const = 0;
|
|
|
|
// return a position relative to origin in meters, North/East/Down
|
|
// order. This will only be accurate if have_inertial_nav() is
|
|
// true
|
|
virtual bool get_relative_position_NED_origin(Vector3f &vec) const WARN_IF_UNUSED {
|
|
return false;
|
|
}
|
|
|
|
// return a position relative to origin in meters, North/East
|
|
// order. Return true if estimate is valid
|
|
virtual bool get_relative_position_NE_origin(Vector2f &vecNE) const WARN_IF_UNUSED {
|
|
return false;
|
|
}
|
|
|
|
// return a Down position relative to origin in meters
|
|
// Return true if estimate is valid
|
|
virtual bool get_relative_position_D_origin(float &posD) const WARN_IF_UNUSED {
|
|
return false;
|
|
}
|
|
|
|
// return ground speed estimate in meters/second. Used by ground vehicles.
|
|
float groundspeed(void) {
|
|
return groundspeed_vector().length();
|
|
}
|
|
|
|
// return true if we will use compass for yaw
|
|
virtual bool use_compass(void) = 0;
|
|
|
|
// return the quaternion defining the rotation from NED to XYZ (body) axes
|
|
virtual bool get_quaternion(Quaternion &quat) const WARN_IF_UNUSED = 0;
|
|
|
|
// return true if the AHRS object supports inertial navigation,
|
|
// with very accurate position and velocity
|
|
virtual bool have_inertial_nav(void) const {
|
|
return false;
|
|
}
|
|
|
|
// is the AHRS subsystem healthy?
|
|
virtual bool healthy(void) const = 0;
|
|
|
|
// true if the AHRS has completed initialisation
|
|
virtual bool initialised(void) const {
|
|
return true;
|
|
};
|
|
virtual bool started(void) const {
|
|
return initialised();
|
|
};
|
|
|
|
// return the amount of yaw angle change due to the last yaw angle reset in radians
|
|
// returns the time of the last yaw angle reset or 0 if no reset has ever occurred
|
|
virtual uint32_t getLastYawResetAngle(float &yawAng) {
|
|
return 0;
|
|
};
|
|
|
|
// return the amount of NE position change in metres due to the last reset
|
|
// returns the time of the last reset or 0 if no reset has ever occurred
|
|
virtual uint32_t getLastPosNorthEastReset(Vector2f &pos) WARN_IF_UNUSED {
|
|
return 0;
|
|
};
|
|
|
|
// return the amount of NE velocity change in metres/sec due to the last reset
|
|
// returns the time of the last reset or 0 if no reset has ever occurred
|
|
virtual uint32_t getLastVelNorthEastReset(Vector2f &vel) const WARN_IF_UNUSED {
|
|
return 0;
|
|
};
|
|
|
|
// return the amount of vertical position change due to the last reset in meters
|
|
// returns the time of the last reset or 0 if no reset has ever occurred
|
|
virtual uint32_t getLastPosDownReset(float &posDelta) WARN_IF_UNUSED {
|
|
return 0;
|
|
};
|
|
|
|
// Resets the baro so that it reads zero at the current height
|
|
// Resets the EKF height to zero
|
|
// Adjusts the EKf origin height so that the EKF height + origin height is the same as before
|
|
// Returns true if the height datum reset has been performed
|
|
// If using a range finder for height no reset is performed and it returns false
|
|
virtual bool resetHeightDatum(void) WARN_IF_UNUSED {
|
|
return false;
|
|
}
|
|
|
|
// return the innovations for the specified instance
|
|
// An out of range instance (eg -1) returns data for the primary instance
|
|
virtual bool get_innovations(Vector3f &velInnov, Vector3f &posInnov, Vector3f &magInnov, float &tasInnov, float &yawInnov) const {
|
|
return false;
|
|
}
|
|
|
|
virtual bool get_filter_status(nav_filter_status &status) const {
|
|
return false;
|
|
}
|
|
|
|
// get_variances - provides the innovations normalised using the innovation variance where a value of 0
|
|
// indicates perfect consistency between the measurement and the EKF solution and a value of 1 is the maximum
|
|
// inconsistency that will be accepted by the filter
|
|
// boolean false is returned if variances are not available
|
|
virtual bool get_variances(float &velVar, float &posVar, float &hgtVar, Vector3f &magVar, float &tasVar) const {
|
|
return false;
|
|
}
|
|
|
|
// get a source's velocity innovations. source should be from 0 to 7 (see AP_NavEKF_Source::SourceXY)
|
|
// returns true on success and results are placed in innovations and variances arguments
|
|
virtual bool get_vel_innovations_and_variances_for_source(uint8_t source, Vector3f &innovations, Vector3f &variances) const WARN_IF_UNUSED {
|
|
return false;
|
|
}
|
|
|
|
virtual void send_ekf_status_report(mavlink_channel_t chan) const = 0;
|
|
|
|
// Retrieves the corrected NED delta velocity in use by the inertial navigation
|
|
virtual void getCorrectedDeltaVelocityNED(Vector3f& ret, float& dt) const {
|
|
ret.zero();
|
|
AP::ins().get_delta_velocity(ret, dt);
|
|
}
|
|
|
|
// get_hgt_ctrl_limit - get maximum height to be observed by the
|
|
// control loops in meters and a validity flag. It will return
|
|
// false when no limiting is required
|
|
virtual bool get_hgt_ctrl_limit(float &limit) const WARN_IF_UNUSED { return false; };
|
|
|
|
// Set to true if the terrain underneath is stable enough to be used as a height reference
|
|
// this is not related to terrain following
|
|
virtual void set_terrain_hgt_stable(bool stable) {}
|
|
|
|
};
|