ardupilot/ArduCopter/mode_zigzag.cpp
2021-11-30 10:08:07 +11:00

587 lines
22 KiB
C++

#include "Copter.h"
#if MODE_ZIGZAG_ENABLED == ENABLED
/*
* Init and run calls for zigzag flight mode
*/
#define ZIGZAG_WP_RADIUS_CM 300
#define ZIGZAG_LINE_INFINITY -1
const AP_Param::GroupInfo ModeZigZag::var_info[] = {
// @Param: AUTO_ENABLE
// @DisplayName: ZigZag auto enable/disable
// @Description: Allows you to enable (1) or disable (0) ZigZag auto feature
// @Values: 0:Disabled,1:Enabled
// @User: Advanced
AP_GROUPINFO_FLAGS("AUTO_ENABLE", 1, ModeZigZag, _auto_enabled, 0, AP_PARAM_FLAG_ENABLE),
#if SPRAYER_ENABLED == ENABLED
// @Param: SPRAYER
// @DisplayName: Auto sprayer in ZigZag
// @Description: Enable the auto sprayer in ZigZag mode. SPRAY_ENABLE = 1 and SERVOx_FUNCTION = 22(SprayerPump) / 23(SprayerSpinner) also must be set. This makes the sprayer on while moving to destination A or B. The sprayer will stop if the vehicle reaches destination or the flight mode is changed from ZigZag to other.
// @Values: 0:Disabled,1:Enabled
// @User: Advanced
AP_GROUPINFO("SPRAYER", 2, ModeZigZag, _spray_enabled, 0),
#endif // SPRAYER_ENABLED == ENABLED
// @Param: WP_DELAY
// @DisplayName: The delay for zigzag waypoint
// @Description: Waiting time after reached the destination
// @Units: s
// @Range: 0 127
// @User: Advanced
AP_GROUPINFO("WP_DELAY", 3, ModeZigZag, _wp_delay, 0),
// @Param: SIDE_DIST
// @DisplayName: Sideways distance in ZigZag auto
// @Description: The distance to move sideways in ZigZag mode
// @Units: m
// @Range: 0.1 100
// @User: Advanced
AP_GROUPINFO("SIDE_DIST", 4, ModeZigZag, _side_dist, 4),
// @Param: DIRECTION
// @DisplayName: Sideways direction in ZigZag auto
// @Description: The direction to move sideways in ZigZag mode
// @Values: 0:forward, 1:right, 2:backward, 3:left
// @User: Advanced
AP_GROUPINFO("DIRECTION", 5, ModeZigZag, _direction, 0),
// @Param: LINE_NUM
// @DisplayName: Total number of lines
// @Description: Total number of lines for ZigZag auto if 1 or more. -1: Infinity, 0: Just moving to sideways
// @Range: -1 32767
// @User: Advanced
AP_GROUPINFO("LINE_NUM", 6, ModeZigZag, _line_num, 0),
AP_GROUPEND
};
ModeZigZag::ModeZigZag(void) : Mode()
{
AP_Param::setup_object_defaults(this, var_info);
}
// initialise zigzag controller
bool ModeZigZag::init(bool ignore_checks)
{
if (!copter.failsafe.radio) {
// apply simple mode transform to pilot inputs
update_simple_mode();
// convert pilot input to lean angles
float target_roll, target_pitch;
get_pilot_desired_lean_angles(target_roll, target_pitch, loiter_nav->get_angle_max_cd(), attitude_control->get_althold_lean_angle_max_cd());
// process pilot's roll and pitch input
loiter_nav->set_pilot_desired_acceleration(target_roll, target_pitch);
} else {
// clear out pilot desired acceleration in case radio failsafe event occurs and we do not switch to RTL for some reason
loiter_nav->clear_pilot_desired_acceleration();
}
loiter_nav->init_target();
// set vertical speed and acceleration limits
pos_control->set_max_speed_accel_z(-get_pilot_speed_dn(), g.pilot_speed_up, g.pilot_accel_z);
pos_control->set_correction_speed_accel_z(-get_pilot_speed_dn(), g.pilot_speed_up, g.pilot_accel_z);
// initialise the vertical position controller
if (!pos_control->is_active_z()) {
pos_control->init_z_controller();
}
// initialise waypoint state
stage = STORING_POINTS;
dest_A.zero();
dest_B.zero();
// initialize zigzag auto
init_auto();
return true;
}
// perform cleanup required when leaving zigzag mode
void ModeZigZag::exit()
{
// The sprayer will stop if the flight mode is changed from ZigZag to other
spray(false);
}
// run the zigzag controller
// should be called at 100hz or more
void ModeZigZag::run()
{
// set vertical speed and acceleration limits
pos_control->set_max_speed_accel_z(-get_pilot_speed_dn(), g.pilot_speed_up, g.pilot_accel_z);
// set the direction and the total number of lines
zigzag_direction = (Direction)constrain_int16(_direction, 0, 3);
line_num = constrain_int16(_line_num, ZIGZAG_LINE_INFINITY, 32767);
// auto control
if (stage == AUTO) {
if (is_disarmed_or_landed() || !motors->get_interlock()) {
// vehicle should be under manual control when disarmed or landed
return_to_manual_control(false);
} else if (reached_destination()) {
// if vehicle has reached destination switch to manual control or moving to A or B
AP_Notify::events.waypoint_complete = 1;
if (is_auto) {
if (line_num == ZIGZAG_LINE_INFINITY || line_count < line_num) {
if (auto_stage == AutoState::SIDEWAYS) {
save_or_move_to_destination((ab_dest_stored == Destination::A) ? Destination::B : Destination::A);
} else {
// spray off
spray(false);
move_to_side();
}
} else {
init_auto();
return_to_manual_control(true);
}
} else {
return_to_manual_control(true);
}
} else {
auto_control();
}
}
// manual control
if (stage == STORING_POINTS || stage == MANUAL_REGAIN) {
// receive pilot's inputs, do position and attitude control
manual_control();
}
}
// save current position as A or B. If both A and B have been saved move to the one specified
void ModeZigZag::save_or_move_to_destination(Destination ab_dest)
{
// get current position as an offset from EKF origin
const Vector2f curr_pos {inertial_nav.get_position_xy_cm()};
// handle state machine changes
switch (stage) {
case STORING_POINTS:
if (ab_dest == Destination::A) {
// store point A
dest_A = curr_pos;
gcs().send_text(MAV_SEVERITY_INFO, "ZigZag: point A stored");
AP::logger().Write_Event(LogEvent::ZIGZAG_STORE_A);
} else {
// store point B
dest_B = curr_pos;
gcs().send_text(MAV_SEVERITY_INFO, "ZigZag: point B stored");
AP::logger().Write_Event(LogEvent::ZIGZAG_STORE_B);
}
// if both A and B have been stored advance state
if (!dest_A.is_zero() && !dest_B.is_zero() && !is_zero((dest_B - dest_A).length_squared())) {
stage = MANUAL_REGAIN;
spray(false);
} else if (!dest_A.is_zero() || !dest_B.is_zero()) {
// if only A or B have been stored, spray on
spray(true);
}
break;
case AUTO:
case MANUAL_REGAIN:
// A and B have been defined, move vehicle to destination A or B
Vector3f next_dest;
bool terr_alt;
if (calculate_next_dest(ab_dest, stage == AUTO, next_dest, terr_alt)) {
wp_nav->wp_and_spline_init();
if (wp_nav->set_wp_destination(next_dest, terr_alt)) {
stage = AUTO;
auto_stage = AutoState::AB_MOVING;
ab_dest_stored = ab_dest;
// spray on while moving to A or B
spray(true);
reach_wp_time_ms = 0;
if (is_auto == false || line_num == ZIGZAG_LINE_INFINITY) {
gcs().send_text(MAV_SEVERITY_INFO, "ZigZag: moving to %s", (ab_dest == Destination::A) ? "A" : "B");
} else {
line_count++;
gcs().send_text(MAV_SEVERITY_INFO, "ZigZag: moving to %s (line %d/%d)", (ab_dest == Destination::A) ? "A" : "B", line_count, line_num);
}
}
}
break;
}
}
void ModeZigZag::move_to_side()
{
if (!dest_A.is_zero() && !dest_B.is_zero() && !is_zero((dest_B - dest_A).length_squared())) {
Vector3f next_dest;
bool terr_alt;
if (calculate_side_dest(next_dest, terr_alt)) {
wp_nav->wp_and_spline_init();
if (wp_nav->set_wp_destination(next_dest, terr_alt)) {
stage = AUTO;
auto_stage = AutoState::SIDEWAYS;
current_dest = next_dest;
current_terr_alt = terr_alt;
reach_wp_time_ms = 0;
char const *dir[] = {"forward", "right", "backward", "left"};
gcs().send_text(MAV_SEVERITY_INFO, "ZigZag: moving to %s", dir[(uint8_t)zigzag_direction]);
}
}
}
}
// return manual control to the pilot
void ModeZigZag::return_to_manual_control(bool maintain_target)
{
if (stage == AUTO) {
stage = MANUAL_REGAIN;
spray(false);
loiter_nav->clear_pilot_desired_acceleration();
if (maintain_target) {
const Vector3f& wp_dest = wp_nav->get_wp_destination();
loiter_nav->init_target(wp_dest.xy());
if (wp_nav->origin_and_destination_are_terrain_alt()) {
copter.surface_tracking.set_target_alt_cm(wp_dest.z);
}
} else {
loiter_nav->init_target();
}
is_auto = false;
gcs().send_text(MAV_SEVERITY_INFO, "ZigZag: manual control");
}
}
// fly the vehicle to closest point on line perpendicular to dest_A or dest_B
void ModeZigZag::auto_control()
{
// process pilot's yaw input
float target_yaw_rate = 0;
if (!copter.failsafe.radio) {
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->norm_input_dz());
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// run waypoint controller
const bool wpnav_ok = wp_nav->update_wpnav();
// WP_Nav has set the vertical position control targets
// run the vertical position controller and set output throttle
pos_control->update_z_controller();
// call attitude controller
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), target_yaw_rate);
// if wpnav failed (because of lack of terrain data) switch back to pilot control for next iteration
if (!wpnav_ok) {
return_to_manual_control(false);
}
}
// manual_control - process manual control
void ModeZigZag::manual_control()
{
float target_yaw_rate = 0.0f;
float target_climb_rate = 0.0f;
// process pilot inputs unless we are in radio failsafe
if (!copter.failsafe.radio) {
float target_roll, target_pitch;
// apply SIMPLE mode transform to pilot inputs
update_simple_mode();
// convert pilot input to lean angles
get_pilot_desired_lean_angles(target_roll, target_pitch, loiter_nav->get_angle_max_cd(), attitude_control->get_althold_lean_angle_max_cd());
// process pilot's roll and pitch input
loiter_nav->set_pilot_desired_acceleration(target_roll, target_pitch);
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->norm_input_dz());
// get pilot desired climb rate
target_climb_rate = get_pilot_desired_climb_rate(channel_throttle->get_control_in());
// make sure the climb rate is in the given range, prevent floating point errors
target_climb_rate = constrain_float(target_climb_rate, -get_pilot_speed_dn(), g.pilot_speed_up);
} else {
// clear out pilot desired acceleration in case radio failsafe event occurs and we
// do not switch to RTL for some reason
loiter_nav->clear_pilot_desired_acceleration();
}
// relax loiter target if we might be landed
if (copter.ap.land_complete_maybe) {
loiter_nav->soften_for_landing();
}
// Loiter State Machine Determination
AltHoldModeState althold_state = get_alt_hold_state(target_climb_rate);
// althold state machine
switch (althold_state) {
case AltHold_MotorStopped:
attitude_control->reset_rate_controller_I_terms();
attitude_control->reset_yaw_target_and_rate();
pos_control->relax_z_controller(0.0f); // forces throttle output to decay to zero
loiter_nav->init_target();
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(loiter_nav->get_roll(), loiter_nav->get_pitch(), target_yaw_rate);
break;
case AltHold_Takeoff:
// initiate take-off
if (!takeoff.running()) {
takeoff.start(constrain_float(g.pilot_takeoff_alt,0.0f,1000.0f));
}
// get avoidance adjusted climb rate
target_climb_rate = get_avoidance_adjusted_climbrate(target_climb_rate);
// run loiter controller
loiter_nav->update();
// call attitude controller
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(loiter_nav->get_roll(), loiter_nav->get_pitch(), target_yaw_rate);
// set position controller targets adjusted for pilot input
takeoff.do_pilot_takeoff(target_climb_rate);
break;
case AltHold_Landed_Ground_Idle:
attitude_control->reset_yaw_target_and_rate();
FALLTHROUGH;
case AltHold_Landed_Pre_Takeoff:
attitude_control->reset_rate_controller_I_terms_smoothly();
loiter_nav->init_target();
attitude_control->input_thrust_vector_rate_heading(loiter_nav->get_thrust_vector(), target_yaw_rate);
pos_control->relax_z_controller(0.0f); // forces throttle output to decay to zero
break;
case AltHold_Flying:
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// run loiter controller
loiter_nav->update();
// call attitude controller
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(loiter_nav->get_roll(), loiter_nav->get_pitch(), target_yaw_rate);
// get avoidance adjusted climb rate
target_climb_rate = get_avoidance_adjusted_climbrate(target_climb_rate);
// update the vertical offset based on the surface measurement
copter.surface_tracking.update_surface_offset();
// Send the commanded climb rate to the position controller
pos_control->set_pos_target_z_from_climb_rate_cm(target_climb_rate);
break;
}
// run the vertical position controller and set output throttle
pos_control->update_z_controller();
}
// return true if vehicle is within a small area around the destination
bool ModeZigZag::reached_destination()
{
// check if wp_nav believes it has reached the destination
if (!wp_nav->reached_wp_destination()) {
return false;
}
// check distance to destination
if (wp_nav->get_wp_distance_to_destination() > ZIGZAG_WP_RADIUS_CM) {
return false;
}
// wait at time which is set in zigzag_wp_delay
uint32_t now = AP_HAL::millis();
if (reach_wp_time_ms == 0) {
reach_wp_time_ms = now;
}
return ((now - reach_wp_time_ms) >= (uint16_t)constrain_int16(_wp_delay, 0, 127) * 1000);
}
// calculate next destination according to vector A-B and current position
// use_wpnav_alt should be true if waypoint controller's altitude target should be used, false for position control or current altitude target
// terrain_alt is returned as true if the next_dest should be considered a terrain alt
bool ModeZigZag::calculate_next_dest(Destination ab_dest, bool use_wpnav_alt, Vector3f& next_dest, bool& terrain_alt) const
{
// define start_pos as either destination A or B
Vector2f start_pos = (ab_dest == Destination::A) ? dest_A : dest_B;
// calculate vector from A to B
Vector2f AB_diff = dest_B - dest_A;
// check distance between A and B
if (is_zero(AB_diff.length_squared())) {
return false;
}
// get distance from vehicle to start_pos
const Vector2f curr_pos2d {inertial_nav.get_position_xy_cm()};
Vector2f veh_to_start_pos = curr_pos2d - start_pos;
// lengthen AB_diff so that it is at least as long as vehicle is from start point
// we need to ensure that the lines perpendicular to AB are long enough to reach the vehicle
float scalar = 1.0f;
if (veh_to_start_pos.length_squared() > AB_diff.length_squared()) {
scalar = veh_to_start_pos.length() / AB_diff.length();
}
// create a line perpendicular to AB but originating at start_pos
Vector2f perp1 = start_pos + Vector2f(-AB_diff[1] * scalar, AB_diff[0] * scalar);
Vector2f perp2 = start_pos + Vector2f(AB_diff[1] * scalar, -AB_diff[0] * scalar);
// find the closest point on the perpendicular line
const Vector2f closest2d = Vector2f::closest_point(curr_pos2d, perp1, perp2);
next_dest.x = closest2d.x;
next_dest.y = closest2d.y;
if (use_wpnav_alt) {
// get altitude target from waypoint controller
terrain_alt = wp_nav->origin_and_destination_are_terrain_alt();
next_dest.z = wp_nav->get_wp_destination().z;
} else {
// if we have a downward facing range finder then use terrain altitude targets
terrain_alt = copter.rangefinder_alt_ok() && wp_nav->rangefinder_used_and_healthy();
if (terrain_alt) {
if (!copter.surface_tracking.get_target_alt_cm(next_dest.z)) {
next_dest.z = copter.rangefinder_state.alt_cm_filt.get();
}
} else {
next_dest.z = pos_control->is_active_z() ? pos_control->get_pos_target_z_cm() : inertial_nav.get_position_z_up_cm();
}
}
return true;
}
// calculate side destination according to vertical vector A-B and current position
// terrain_alt is returned as true if the next_dest should be considered a terrain alt
bool ModeZigZag::calculate_side_dest(Vector3f& next_dest, bool& terrain_alt) const
{
// calculate vector from A to B
Vector2f AB_diff = dest_B - dest_A;
// calculate a vertical right or left vector for AB from the current yaw direction
Vector2f AB_side;
if (zigzag_direction == Direction::RIGHT || zigzag_direction == Direction::LEFT) {
float yaw_ab_sign = (-ahrs.sin_yaw() * AB_diff[1]) + (ahrs.cos_yaw() * -AB_diff[0]);
if (is_positive(yaw_ab_sign * (zigzag_direction == Direction::RIGHT ? 1 : -1))) {
AB_side = Vector2f(AB_diff[1], -AB_diff[0]);
} else {
AB_side = Vector2f(-AB_diff[1], AB_diff[0]);
}
} else {
float yaw_ab_sign = (ahrs.cos_yaw() * AB_diff[1]) + (ahrs.sin_yaw() * -AB_diff[0]);
if (is_positive(yaw_ab_sign * (zigzag_direction == Direction::FORWARD ? 1 : -1))) {
AB_side = Vector2f(AB_diff[1], -AB_diff[0]);
} else {
AB_side = Vector2f(-AB_diff[1], AB_diff[0]);
}
}
// check distance the vertical vector between A and B
if (is_zero(AB_side.length_squared())) {
return false;
}
// adjust AB_side length to zigzag_side_dist
float scalar = constrain_float(_side_dist, 0.1f, 100.0f) * 100 / safe_sqrt(AB_side.length_squared());
// get distance from vehicle to start_pos
const Vector2f curr_pos2d {inertial_nav.get_position_xy_cm()};
next_dest.x = curr_pos2d.x + (AB_side.x * scalar);
next_dest.y = curr_pos2d.y + (AB_side.y * scalar);
// if we have a downward facing range finder then use terrain altitude targets
terrain_alt = copter.rangefinder_alt_ok() && wp_nav->rangefinder_used_and_healthy();
if (terrain_alt) {
if (!copter.surface_tracking.get_target_alt_cm(next_dest.z)) {
next_dest.z = copter.rangefinder_state.alt_cm_filt.get();
}
} else {
next_dest.z = pos_control->is_active_z() ? pos_control->get_pos_target_z_cm() : inertial_nav.get_position_z_up_cm();
}
return true;
}
// run zigzag auto feature which is automate both AB and sideways
void ModeZigZag::run_auto()
{
// exit immediately if we are disabled
if (!_auto_enabled) {
return;
}
// make sure both A and B point are registered and not when moving to A or B
if (stage != MANUAL_REGAIN) {
return;
}
is_auto = true;
// resume if zigzag auto is suspended
if (is_suspended && line_count <= line_num) {
// resume the stage when it was suspended
if (auto_stage == AutoState::AB_MOVING) {
line_count--;
save_or_move_to_destination(ab_dest_stored);
} else if (auto_stage == AutoState::SIDEWAYS) {
wp_nav->wp_and_spline_init();
if (wp_nav->set_wp_destination(current_dest, current_terr_alt)) {
stage = AUTO;
reach_wp_time_ms = 0;
char const *dir[] = {"forward", "right", "backward", "left"};
gcs().send_text(MAV_SEVERITY_INFO, "ZigZag: moving to %s", dir[(uint8_t)zigzag_direction]);
}
}
} else {
move_to_side();
}
}
// suspend zigzag auto
void ModeZigZag::suspend_auto()
{
// exit immediately if we are disabled
if (!_auto_enabled) {
return;
}
if (auto_stage != AutoState::MANUAL) {
is_suspended = true;
return_to_manual_control(true);
}
}
// initialize zigzag auto
void ModeZigZag::init_auto()
{
is_auto = false;
auto_stage = AutoState::MANUAL;
line_count = 0;
is_suspended = false;
}
// spray on / off
void ModeZigZag::spray(bool b)
{
#if SPRAYER_ENABLED == ENABLED
if (_spray_enabled) {
copter.sprayer.run(b);
}
#endif
}
#endif // MODE_ZIGZAG_ENABLED == ENABLED