ardupilot/ArduCopter/mode_flowhold.cpp
Peter Barker 285d752143 ArduCopter: create and use AP_OPTICALFLOW_ENABLED
Including a define for each backend.
2021-12-29 18:12:03 +11:00

513 lines
18 KiB
C++

#include "Copter.h"
#include <utility>
#if !HAL_MINIMIZE_FEATURES && AP_OPTICALFLOW_ENABLED
/*
implement FLOWHOLD mode, for position hold using optical flow
without rangefinder
*/
const AP_Param::GroupInfo ModeFlowHold::var_info[] = {
// @Param: _XY_P
// @DisplayName: FlowHold P gain
// @Description: FlowHold (horizontal) P gain.
// @Range: 0.1 6.0
// @Increment: 0.1
// @User: Advanced
// @Param: _XY_I
// @DisplayName: FlowHold I gain
// @Description: FlowHold (horizontal) I gain
// @Range: 0.02 1.00
// @Increment: 0.01
// @User: Advanced
// @Param: _XY_IMAX
// @DisplayName: FlowHold Integrator Max
// @Description: FlowHold (horizontal) integrator maximum
// @Range: 0 4500
// @Increment: 10
// @Units: cdeg
// @User: Advanced
// @Param: _XY_FILT_HZ
// @DisplayName: FlowHold filter on input to control
// @Description: FlowHold (horizontal) filter on input to control
// @Range: 0 100
// @Units: Hz
// @User: Advanced
AP_SUBGROUPINFO(flow_pi_xy, "_XY_", 1, ModeFlowHold, AC_PI_2D),
// @Param: _FLOW_MAX
// @DisplayName: FlowHold Flow Rate Max
// @Description: Controls maximum apparent flow rate in flowhold
// @Range: 0.1 2.5
// @User: Standard
AP_GROUPINFO("_FLOW_MAX", 2, ModeFlowHold, flow_max, 0.6),
// @Param: _FILT_HZ
// @DisplayName: FlowHold Filter Frequency
// @Description: Filter frequency for flow data
// @Range: 1 100
// @Units: Hz
// @User: Standard
AP_GROUPINFO("_FILT_HZ", 3, ModeFlowHold, flow_filter_hz, 5),
// @Param: _QUAL_MIN
// @DisplayName: FlowHold Flow quality minimum
// @Description: Minimum flow quality to use flow position hold
// @Range: 0 255
// @User: Standard
AP_GROUPINFO("_QUAL_MIN", 4, ModeFlowHold, flow_min_quality, 10),
// 5 was FLOW_SPEED
// @Param: _BRAKE_RATE
// @DisplayName: FlowHold Braking rate
// @Description: Controls deceleration rate on stick release
// @Range: 1 30
// @User: Standard
// @Units: deg/s
AP_GROUPINFO("_BRAKE_RATE", 6, ModeFlowHold, brake_rate_dps, 8),
AP_GROUPEND
};
ModeFlowHold::ModeFlowHold(void) : Mode()
{
AP_Param::setup_object_defaults(this, var_info);
}
#define CONTROL_FLOWHOLD_EARTH_FRAME 0
// flowhold_init - initialise flowhold controller
bool ModeFlowHold::init(bool ignore_checks)
{
if (!copter.optflow.enabled() || !copter.optflow.healthy()) {
return false;
}
// set vertical speed and acceleration limits
pos_control->set_max_speed_accel_z(-get_pilot_speed_dn(), g.pilot_speed_up, g.pilot_accel_z);
pos_control->set_correction_speed_accel_z(-get_pilot_speed_dn(), g.pilot_speed_up, g.pilot_accel_z);
// initialise the vertical position controller
if (!copter.pos_control->is_active_z()) {
pos_control->init_z_controller();
}
flow_filter.set_cutoff_frequency(copter.scheduler.get_loop_rate_hz(), flow_filter_hz.get());
quality_filtered = 0;
flow_pi_xy.reset_I();
limited = false;
flow_pi_xy.set_dt(1.0/copter.scheduler.get_loop_rate_hz());
// start with INS height
last_ins_height = copter.inertial_nav.get_position_z_up_cm() * 0.01;
height_offset = 0;
return true;
}
/*
calculate desired attitude from flow sensor. Called when flow sensor is healthy
*/
void ModeFlowHold::flowhold_flow_to_angle(Vector2f &bf_angles, bool stick_input)
{
uint32_t now = AP_HAL::millis();
// get corrected raw flow rate
Vector2f raw_flow = copter.optflow.flowRate() - copter.optflow.bodyRate();
// limit sensor flow, this prevents oscillation at low altitudes
raw_flow.x = constrain_float(raw_flow.x, -flow_max, flow_max);
raw_flow.y = constrain_float(raw_flow.y, -flow_max, flow_max);
// filter the flow rate
Vector2f sensor_flow = flow_filter.apply(raw_flow);
// scale by height estimate, limiting it to height_min to height_max
float ins_height = copter.inertial_nav.get_position_z_up_cm() * 0.01;
float height_estimate = ins_height + height_offset;
// compensate for height, this converts to (approx) m/s
sensor_flow *= constrain_float(height_estimate, height_min, height_max);
// rotate controller input to earth frame
Vector2f input_ef = copter.ahrs.body_to_earth2D(sensor_flow);
// run PI controller
flow_pi_xy.set_input(input_ef);
// get earth frame controller attitude in centi-degrees
Vector2f ef_output;
// get P term
ef_output = flow_pi_xy.get_p();
if (stick_input) {
last_stick_input_ms = now;
braking = true;
}
if (!stick_input && braking) {
// stop braking if either 3s has passed, or we have slowed below 0.3m/s
if (now - last_stick_input_ms > 3000 || sensor_flow.length() < 0.3) {
braking = false;
#if 0
printf("braking done at %u vel=%f\n", now - last_stick_input_ms,
(double)sensor_flow.length());
#endif
}
}
if (!stick_input && !braking) {
// get I term
if (limited) {
// only allow I term to shrink in length
xy_I = flow_pi_xy.get_i_shrink();
} else {
// normal I term operation
xy_I = flow_pi_xy.get_pi();
}
}
if (!stick_input && braking) {
// calculate brake angle for each axis separately
for (uint8_t i=0; i<2; i++) {
float &velocity = sensor_flow[i];
float abs_vel_cms = fabsf(velocity)*100;
const float brake_gain = (15.0f * brake_rate_dps.get() + 95.0f) / 100.0f;
float lean_angle_cd = brake_gain * abs_vel_cms * (1.0f+500.0f/(abs_vel_cms+60.0f));
if (velocity < 0) {
lean_angle_cd = -lean_angle_cd;
}
bf_angles[i] = lean_angle_cd;
}
ef_output.zero();
}
ef_output += xy_I;
ef_output *= copter.aparm.angle_max;
// convert to body frame
bf_angles += copter.ahrs.earth_to_body2D(ef_output);
// set limited flag to prevent integrator windup
limited = fabsf(bf_angles.x) > copter.aparm.angle_max || fabsf(bf_angles.y) > copter.aparm.angle_max;
// constrain to angle limit
bf_angles.x = constrain_float(bf_angles.x, -copter.aparm.angle_max, copter.aparm.angle_max);
bf_angles.y = constrain_float(bf_angles.y, -copter.aparm.angle_max, copter.aparm.angle_max);
// @LoggerMessage: FHLD
// @Description: FlowHold mode messages
// @URL: https://ardupilot.org/copter/docs/flowhold-mode.html
// @Field: TimeUS: Time since system startup
// @Field: SFx: Filtered flow rate, X-Axis
// @Field: SFy: Filtered flow rate, Y-Axis
// @Field: Ax: Target lean angle, X-Axis
// @Field: Ay: Target lean angle, Y-Axis
// @Field: Qual: Flow sensor quality. If this value falls below FHLD_QUAL_MIN parameter, FlowHold will act just like AltHold.
// @Field: Ix: Integral part of PI controller, X-Axis
// @Field: Iy: Integral part of PI controller, Y-Axis
if (log_counter++ % 20 == 0) {
AP::logger().WriteStreaming("FHLD", "TimeUS,SFx,SFy,Ax,Ay,Qual,Ix,Iy", "Qfffffff",
AP_HAL::micros64(),
(double)sensor_flow.x, (double)sensor_flow.y,
(double)bf_angles.x, (double)bf_angles.y,
(double)quality_filtered,
(double)xy_I.x, (double)xy_I.y);
}
}
// flowhold_run - runs the flowhold controller
// should be called at 100hz or more
void ModeFlowHold::run()
{
update_height_estimate();
// set vertical speed and acceleration limits
pos_control->set_max_speed_accel_z(-get_pilot_speed_dn(), g.pilot_speed_up, g.pilot_accel_z);
// apply SIMPLE mode transform to pilot inputs
update_simple_mode();
// check for filter change
if (!is_equal(flow_filter.get_cutoff_freq(), flow_filter_hz.get())) {
flow_filter.set_cutoff_frequency(flow_filter_hz.get());
}
// get pilot desired climb rate
float target_climb_rate = copter.get_pilot_desired_climb_rate(copter.channel_throttle->get_control_in());
target_climb_rate = constrain_float(target_climb_rate, -get_pilot_speed_dn(), copter.g.pilot_speed_up);
// get pilot's desired yaw rate
float target_yaw_rate = get_pilot_desired_yaw_rate(copter.channel_yaw->norm_input_dz());
// Flow Hold State Machine Determination
AltHoldModeState flowhold_state = get_alt_hold_state(target_climb_rate);
if (copter.optflow.healthy()) {
const float filter_constant = 0.95;
quality_filtered = filter_constant * quality_filtered + (1-filter_constant) * copter.optflow.quality();
} else {
quality_filtered = 0;
}
// Flow Hold State Machine
switch (flowhold_state) {
case AltHold_MotorStopped:
copter.motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::SHUT_DOWN);
copter.attitude_control->reset_rate_controller_I_terms();
copter.attitude_control->reset_yaw_target_and_rate();
copter.pos_control->relax_z_controller(0.0f); // forces throttle output to decay to zero
flow_pi_xy.reset_I();
break;
case AltHold_Takeoff:
// set motors to full range
copter.motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// initiate take-off
if (!takeoff.running()) {
takeoff.start(constrain_float(g.pilot_takeoff_alt,0.0f,1000.0f));
}
// get avoidance adjusted climb rate
target_climb_rate = get_avoidance_adjusted_climbrate(target_climb_rate);
// set position controller targets adjusted for pilot input
takeoff.do_pilot_takeoff(target_climb_rate);
break;
case AltHold_Landed_Ground_Idle:
attitude_control->reset_yaw_target_and_rate();
FALLTHROUGH;
case AltHold_Landed_Pre_Takeoff:
attitude_control->reset_rate_controller_I_terms_smoothly();
pos_control->relax_z_controller(0.0f); // forces throttle output to decay to zero
break;
case AltHold_Flying:
copter.motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// get avoidance adjusted climb rate
target_climb_rate = get_avoidance_adjusted_climbrate(target_climb_rate);
// update the vertical offset based on the surface measurement
copter.surface_tracking.update_surface_offset();
// Send the commanded climb rate to the position controller
pos_control->set_pos_target_z_from_climb_rate_cm(target_climb_rate);
break;
}
// flowhold attitude target calculations
Vector2f bf_angles;
// calculate alt-hold angles
int16_t roll_in = copter.channel_roll->get_control_in();
int16_t pitch_in = copter.channel_pitch->get_control_in();
float angle_max = copter.aparm.angle_max;
get_pilot_desired_lean_angles(bf_angles.x, bf_angles.y, angle_max, attitude_control->get_althold_lean_angle_max_cd());
if (quality_filtered >= flow_min_quality &&
AP_HAL::millis() - copter.arm_time_ms > 3000) {
// don't use for first 3s when we are just taking off
Vector2f flow_angles;
flowhold_flow_to_angle(flow_angles, (roll_in != 0) || (pitch_in != 0));
flow_angles.x = constrain_float(flow_angles.x, -angle_max/2, angle_max/2);
flow_angles.y = constrain_float(flow_angles.y, -angle_max/2, angle_max/2);
bf_angles += flow_angles;
}
bf_angles.x = constrain_float(bf_angles.x, -angle_max, angle_max);
bf_angles.y = constrain_float(bf_angles.y, -angle_max, angle_max);
#if AC_AVOID_ENABLED == ENABLED
// apply avoidance
copter.avoid.adjust_roll_pitch(bf_angles.x, bf_angles.y, copter.aparm.angle_max);
#endif
// call attitude controller
copter.attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(bf_angles.x, bf_angles.y, target_yaw_rate);
// run the vertical position controller and set output throttle
pos_control->update_z_controller();
}
/*
update height estimate using integrated accelerometer ratio with optical flow
*/
void ModeFlowHold::update_height_estimate(void)
{
float ins_height = copter.inertial_nav.get_position_z_up_cm() * 0.01;
#if 1
// assume on ground when disarmed, or if we have only just started spooling the motors up
if (!hal.util->get_soft_armed() ||
copter.motors->get_desired_spool_state() != AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED ||
AP_HAL::millis() - copter.arm_time_ms < 1500) {
height_offset = -ins_height;
last_ins_height = ins_height;
return;
}
#endif
// get delta velocity in body frame
Vector3f delta_vel;
float delta_vel_dt;
if (!copter.ins.get_delta_velocity(delta_vel, delta_vel_dt)) {
return;
}
// integrate delta velocity in earth frame
const Matrix3f &rotMat = copter.ahrs.get_rotation_body_to_ned();
delta_vel = rotMat * delta_vel;
delta_velocity_ne.x += delta_vel.x;
delta_velocity_ne.y += delta_vel.y;
if (!copter.optflow.healthy()) {
// can't update height model with no flow sensor
last_flow_ms = AP_HAL::millis();
delta_velocity_ne.zero();
return;
}
if (last_flow_ms == 0) {
// just starting up
last_flow_ms = copter.optflow.last_update();
delta_velocity_ne.zero();
height_offset = 0;
return;
}
if (copter.optflow.last_update() == last_flow_ms) {
// no new flow data
return;
}
// convert delta velocity back to body frame to match the flow sensor
Vector2f delta_vel_bf = copter.ahrs.earth_to_body2D(delta_velocity_ne);
// and convert to an rate equivalent, to be comparable to flow
Vector2f delta_vel_rate(-delta_vel_bf.y, delta_vel_bf.x);
// get body flow rate in radians per second
Vector2f flow_rate_rps = copter.optflow.flowRate() - copter.optflow.bodyRate();
uint32_t dt_ms = copter.optflow.last_update() - last_flow_ms;
if (dt_ms > 500) {
// too long between updates, ignore
last_flow_ms = copter.optflow.last_update();
delta_velocity_ne.zero();
last_flow_rate_rps = flow_rate_rps;
last_ins_height = ins_height;
height_offset = 0;
return;
}
/*
basic equation is:
height_m = delta_velocity_mps / delta_flowrate_rps;
*/
// get delta_flowrate_rps
Vector2f delta_flowrate = flow_rate_rps - last_flow_rate_rps;
last_flow_rate_rps = flow_rate_rps;
last_flow_ms = copter.optflow.last_update();
/*
update height estimate
*/
const float min_velocity_change = 0.04;
const float min_flow_change = 0.04;
const float height_delta_max = 0.25;
/*
for each axis update the height estimate
*/
float delta_height = 0;
uint8_t total_weight = 0;
float height_estimate = ins_height + height_offset;
for (uint8_t i=0; i<2; i++) {
// only use height estimates when we have significant delta-velocity and significant delta-flow
float abs_flow = fabsf(delta_flowrate[i]);
if (abs_flow < min_flow_change ||
fabsf(delta_vel_rate[i]) < min_velocity_change) {
continue;
}
// get instantaneous height estimate
float height = delta_vel_rate[i] / delta_flowrate[i];
if (height <= 0) {
// discard negative heights
continue;
}
delta_height += (height - height_estimate) * abs_flow;
total_weight += abs_flow;
}
if (total_weight > 0) {
delta_height /= total_weight;
}
if (delta_height < 0) {
// bias towards lower heights, as we'd rather have too low
// gain than have oscillation. This also compensates a bit for
// the discard of negative heights above
delta_height *= 2;
}
// don't update height by more than height_delta_max, this is a simple way of rejecting noise
float new_offset = height_offset + constrain_float(delta_height, -height_delta_max, height_delta_max);
// apply a simple filter
height_offset = 0.8 * height_offset + 0.2 * new_offset;
if (ins_height + height_offset < height_min) {
// height estimate is never allowed below the minimum
height_offset = height_min - ins_height;
}
// new height estimate for logging
height_estimate = ins_height + height_offset;
// @LoggerMessage: FHXY
// @Description: Height estimation using optical flow sensor
// @Field: TimeUS: Time since system startup
// @Field: DFx: Delta flow rate, X-Axis
// @Field: DFy: Delta flow rate, Y-Axis
// @Field: DVx: Integrated delta velocity rate, X-Axis
// @Field: DVy: Integrated delta velocity rate, Y-Axis
// @Field: Hest: Estimated Height
// @Field: DH: Delta Height
// @Field: Hofs: Height offset
// @Field: InsH: Height estimate from inertial navigation library
// @Field: LastInsH: Last used INS height in optical flow sensor height estimation calculations
// @Field: DTms: Time between optical flow sensor updates. This should be less than 500ms for performing the height estimation calculations
AP::logger().WriteStreaming("FHXY", "TimeUS,DFx,DFy,DVx,DVy,Hest,DH,Hofs,InsH,LastInsH,DTms", "QfffffffffI",
AP_HAL::micros64(),
(double)delta_flowrate.x,
(double)delta_flowrate.y,
(double)delta_vel_rate.x,
(double)delta_vel_rate.y,
(double)height_estimate,
(double)delta_height,
(double)height_offset,
(double)ins_height,
(double)last_ins_height,
dt_ms);
gcs().send_named_float("HEST", height_estimate);
delta_velocity_ne.zero();
last_ins_height = ins_height;
}
#endif // AP_OPTICALFLOW_ENABLED