ardupilot/ArduPlane/ArduPlane.pde

982 lines
30 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#define THISFIRMWARE "ArduPlane V2.26"
/*
Authors: Doug Weibel, Jose Julio, Jordi Munoz, Jason Short
Thanks to: Chris Anderson, HappyKillMore, Bill Premerlani, James Cohen, JB from rotorFX, Automatik, Fefenin, Peter Meister, Remzibi
Please contribute your ideas!
This firmware is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
*/
////////////////////////////////////////////////////////////////////////////////
// Header includes
////////////////////////////////////////////////////////////////////////////////
// AVR runtime
#include <avr/io.h>
#include <avr/eeprom.h>
#include <avr/pgmspace.h>
#include <math.h>
// Libraries
#include <FastSerial.h>
#include <AP_Common.h>
#include <Arduino_Mega_ISR_Registry.h>
#include <APM_RC.h> // ArduPilot Mega RC Library
#include <AP_GPS.h> // ArduPilot GPS library
#include <Wire.h> // Arduino I2C lib
#include <SPI.h> // Arduino SPI lib
#include <DataFlash.h> // ArduPilot Mega Flash Memory Library
#include <AP_ADC.h> // ArduPilot Mega Analog to Digital Converter Library
#include <AP_AnalogSource.h>// ArduPilot Mega polymorphic analog getter
#include <AP_PeriodicProcess.h> // ArduPilot Mega TimerProcess and TimerAperiodicProcess
#include <APM_BMP085.h> // ArduPilot Mega BMP085 Library
#include <AP_Compass.h> // ArduPilot Mega Magnetometer Library
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
#include <AP_InertialSensor.h> // Inertial Sensor (uncalibated IMU) Library
#include <AP_IMU.h> // ArduPilot Mega IMU Library
#include <AP_DCM.h> // ArduPilot Mega DCM Library
#include <PID.h> // PID library
#include <RC_Channel.h> // RC Channel Library
#include <AP_RangeFinder.h> // Range finder library
#include <ModeFilter.h>
#include <AP_Relay.h> // APM relay
#include <AP_Mount.h> // Camera/Antenna mount
#include <GCS_MAVLink.h> // MAVLink GCS definitions
#include <memcheck.h>
// Configuration
#include "config.h"
// Local modules
#include "defines.h"
#include "Parameters.h"
#include "GCS.h"
////////////////////////////////////////////////////////////////////////////////
// Serial ports
////////////////////////////////////////////////////////////////////////////////
//
// Note that FastSerial port buffers are allocated at ::begin time,
// so there is not much of a penalty to defining ports that we don't
// use.
//
FastSerialPort0(Serial); // FTDI/console
FastSerialPort1(Serial1); // GPS port
FastSerialPort3(Serial3); // Telemetry port
////////////////////////////////////////////////////////////////////////////////
// ISR Registry
////////////////////////////////////////////////////////////////////////////////
Arduino_Mega_ISR_Registry isr_registry;
////////////////////////////////////////////////////////////////////////////////
// APM_RC_Class Instance
////////////////////////////////////////////////////////////////////////////////
#if CONFIG_APM_HARDWARE == APM_HARDWARE_PURPLE
APM_RC_Purple APM_RC;
#else
APM_RC_APM1 APM_RC;
#endif
////////////////////////////////////////////////////////////////////////////////
// Dataflash
////////////////////////////////////////////////////////////////////////////////
#if CONFIG_APM_HARDWARE == APM_HARDWARE_PURPLE
DataFlash_Purple DataFlash;
#else
DataFlash_APM1 DataFlash;
#endif
////////////////////////////////////////////////////////////////////////////////
// Parameters
////////////////////////////////////////////////////////////////////////////////
//
// Global parameters are all contained within the 'g' class.
//
static Parameters g;
////////////////////////////////////////////////////////////////////////////////
// prototypes
static void update_events(void);
////////////////////////////////////////////////////////////////////////////////
// Sensors
////////////////////////////////////////////////////////////////////////////////
//
// There are three basic options related to flight sensor selection.
//
// - Normal flight mode. Real sensors are used.
// - HIL Attitude mode. Most sensors are disabled, as the HIL
// protocol supplies attitude information directly.
// - HIL Sensors mode. Synthetic sensors are configured that
// supply data from the simulation.
//
// All GPS access should be through this pointer.
static GPS *g_gps;
// flight modes convenience array
static AP_Int8 *flight_modes = &g.flight_mode1;
#if HIL_MODE == HIL_MODE_DISABLED
// real sensors
static AP_ADC_ADS7844 adc;
#ifdef DESKTOP_BUILD
APM_BMP085_HIL_Class barometer;
AP_Compass_HIL compass;
#else
static APM_BMP085_Class barometer;
static AP_Compass_HMC5843 compass(Parameters::k_param_compass);
#endif
// real GPS selection
#if GPS_PROTOCOL == GPS_PROTOCOL_AUTO
AP_GPS_Auto g_gps_driver(&Serial1, &g_gps);
#elif GPS_PROTOCOL == GPS_PROTOCOL_NMEA
AP_GPS_NMEA g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF
AP_GPS_SIRF g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX
AP_GPS_UBLOX g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK
AP_GPS_MTK g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK16
AP_GPS_MTK16 g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_NONE
AP_GPS_None g_gps_driver(NULL);
#else
#error Unrecognised GPS_PROTOCOL setting.
#endif // GPS PROTOCOL
# if CONFIG_IMU_TYPE == CONFIG_IMU_MPU6000
AP_InertialSensor_MPU6000 ins( CONFIG_MPU6000_CHIP_SELECT_PIN );
# else
AP_InertialSensor_Oilpan ins( &adc );
#endif // CONFIG_IMU_TYPE
AP_IMU_INS imu( &ins, Parameters::k_param_IMU_calibration );
AP_DCM dcm(&imu, g_gps);
AP_TimerProcess timer_scheduler;
#elif HIL_MODE == HIL_MODE_SENSORS
// sensor emulators
AP_ADC_HIL adc;
APM_BMP085_HIL_Class barometer;
AP_Compass_HIL compass;
AP_GPS_HIL g_gps_driver(NULL);
AP_InertialSensor_Oilpan ins( &adc );
AP_IMU_Shim imu;
AP_DCM dcm(&imu, g_gps);
AP_TimerProcess timer_scheduler;
#elif HIL_MODE == HIL_MODE_ATTITUDE
AP_ADC_HIL adc;
AP_DCM_HIL dcm;
AP_GPS_HIL g_gps_driver(NULL);
AP_Compass_HIL compass; // never used
AP_IMU_Shim imu; // never used
#else
#error Unrecognised HIL_MODE setting.
#endif // HIL MODE
////////////////////////////////////////////////////////////////////////////////
// GCS selection
////////////////////////////////////////////////////////////////////////////////
//
GCS_MAVLINK gcs0(Parameters::k_param_streamrates_port0);
GCS_MAVLINK gcs3(Parameters::k_param_streamrates_port3);
////////////////////////////////////////////////////////////////////////////////
// PITOT selection
////////////////////////////////////////////////////////////////////////////////
//
ModeFilter sonar_mode_filter;
#if CONFIG_PITOT_SOURCE == PITOT_SOURCE_ADC
AP_AnalogSource_ADC pitot_analog_source( &adc,
CONFIG_PITOT_SOURCE_ADC_CHANNEL, 0.25);
#elif CONFIG_PITOT_SOURCE == PITOT_SOURCE_ANALOG_PIN
AP_AnalogSource_Arduino pitot_analog_source(CONFIG_PITOT_SOURCE_ANALOG_PIN);
#endif
#if SONAR_TYPE == MAX_SONAR_XL
AP_RangeFinder_MaxsonarXL sonar(&pitot_analog_source, &sonar_mode_filter);
#elif SONAR_TYPE == MAX_SONAR_LV
// XXX honestly I think these output the same values
// If someone knows, can they confirm it?
AP_RangeFinder_MaxsonarXL sonar(&pitot_analog_source, &sonar_mode_filter);
#endif
////////////////////////////////////////////////////////////////////////////////
// Global variables
////////////////////////////////////////////////////////////////////////////////
byte control_mode = INITIALISING;
byte oldSwitchPosition; // for remembering the control mode switch
bool inverted_flight = false;
#if USB_MUX_PIN > 0
static bool usb_connected;
#endif
static const char *comma = ",";
static const char* flight_mode_strings[] = {
"Manual",
"Circle",
"Stabilize",
"",
"",
"FBW_A",
"FBW_B",
"",
"",
"",
"Auto",
"RTL",
"Loiter",
"Takeoff",
"Land"};
/* Radio values
Channel assignments
1 Ailerons (rudder if no ailerons)
2 Elevator
3 Throttle
4 Rudder (if we have ailerons)
5 Aux5
6 Aux6
7 Aux7
8 Aux8/Mode
Each Aux channel can be configured to have any of the available auxiliary functions assigned to it.
See libraries/RC_Channel/RC_Channel_aux.h for more information
*/
// Failsafe
// --------
static int failsafe; // track which type of failsafe is being processed
static bool ch3_failsafe;
static byte crash_timer;
// Radio
// -----
static uint16_t elevon1_trim = 1500; // TODO: handle in EEProm
static uint16_t elevon2_trim = 1500;
static uint16_t ch1_temp = 1500; // Used for elevon mixing
static uint16_t ch2_temp = 1500;
static int16_t rc_override[8] = {0,0,0,0,0,0,0,0};
static bool rc_override_active = false;
static uint32_t rc_override_fs_timer = 0;
static uint32_t ch3_failsafe_timer = 0;
// for elevons radio_in[CH_ROLL] and radio_in[CH_PITCH] are equivalent aileron and elevator, not left and right elevon
// LED output
// ----------
static bool GPS_light; // status of the GPS light
// GPS variables
// -------------
static const float t7 = 10000000.0; // used to scale GPS values for EEPROM storage
static float scaleLongUp = 1; // used to reverse longitude scaling
static float scaleLongDown = 1; // used to reverse longitude scaling
static byte ground_start_count = 5; // have we achieved first lock and set Home?
static int ground_start_avg; // 5 samples to avg speed for ground start
static bool GPS_enabled = false; // used to quit "looking" for gps with auto-detect if none present
// Location & Navigation
// ---------------------
const float radius_of_earth = 6378100; // meters
const float gravity = 9.81; // meters/ sec^2
static long nav_bearing; // deg * 100 : 0 to 360 current desired bearing to navigate
static long target_bearing; // deg * 100 : 0 to 360 location of the plane to the target
static long crosstrack_bearing; // deg * 100 : 0 to 360 desired angle of plane to target
static float nav_gain_scaler = 1; // Gain scaling for headwind/tailwind TODO: why does this variable need to be initialized to 1?
static long hold_course = -1; // deg * 100 dir of plane
static byte command_index; // current command memory location
static byte nav_command_index; // active nav command memory location
static byte non_nav_command_index; // active non-nav command memory location
static byte nav_command_ID = NO_COMMAND; // active nav command ID
static byte non_nav_command_ID = NO_COMMAND; // active non-nav command ID
// Airspeed
// --------
static int airspeed; // m/s * 100
static int airspeed_nudge; // m/s * 100 : additional airspeed based on throttle stick position in top 1/2 of range
static float airspeed_error; // m/s * 100
static float airspeed_fbwB; // m/s * 100
static long energy_error; // energy state error (kinetic + potential) for altitude hold
static long airspeed_energy_error; // kinetic portion of energy error
// Location Errors
// ---------------
static long bearing_error; // deg * 100 : 0 to 36000
static long altitude_error; // meters * 100 we are off in altitude
static float crosstrack_error; // meters we are off trackline
// Battery Sensors
// ---------------
static float battery_voltage = LOW_VOLTAGE * 1.05; // Battery Voltage of total battery, initialized above threshold for filter
static float battery_voltage1 = LOW_VOLTAGE * 1.05; // Battery Voltage of cell 1, initialized above threshold for filter
static float battery_voltage2 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2, initialized above threshold for filter
static float battery_voltage3 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2+3, initialized above threshold for filter
static float battery_voltage4 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2+3 + 4, initialized above threshold for filter
static float current_amps;
static float current_total;
// Airspeed Sensors
// ----------------
static float airspeed_raw; // Airspeed Sensor - is a float to better handle filtering
static int airspeed_pressure; // airspeed as a pressure value
// Barometer Sensor variables
// --------------------------
static unsigned long abs_pressure;
// Altitude Sensor variables
// ----------------------
static int sonar_alt;
// flight mode specific
// --------------------
static bool takeoff_complete = true; // Flag for using gps ground course instead of IMU yaw. Set false when takeoff command processes.
static bool land_complete;
static long takeoff_altitude;
// static int landing_distance; // meters;
static int landing_pitch; // pitch for landing set by commands
static int takeoff_pitch;
// Loiter management
// -----------------
static long old_target_bearing; // deg * 100
static int loiter_total; // deg : how many times to loiter * 360
static int loiter_delta; // deg : how far we just turned
static int loiter_sum; // deg : how far we have turned around a waypoint
static long loiter_time; // millis : when we started LOITER mode
static int loiter_time_max; // millis : how long to stay in LOITER mode
// these are the values for navigation control functions
// ----------------------------------------------------
static long nav_roll; // deg * 100 : target roll angle
static long nav_pitch; // deg * 100 : target pitch angle
static int throttle_nudge = 0; // 0-(throttle_max - throttle_cruise) : throttle nudge in Auto mode using top 1/2 of throttle stick travel
// Waypoints
// ---------
static long wp_distance; // meters - distance between plane and next waypoint
static long wp_totalDistance; // meters - distance between old and next waypoint
// repeating event control
// -----------------------
static byte event_id; // what to do - see defines
static long event_timer; // when the event was asked for in ms
static uint16_t event_delay; // how long to delay the next firing of event in millis
static int event_repeat = 0; // how many times to cycle : -1 (or -2) = forever, 2 = do one cycle, 4 = do two cycles
static int event_value; // per command value, such as PWM for servos
static int event_undo_value; // the value used to cycle events (alternate value to event_value)
// delay command
// --------------
static long condition_value; // used in condition commands (eg delay, change alt, etc.)
static long condition_start;
static int condition_rate;
// 3D Location vectors
// -------------------
static struct Location home; // home location
static struct Location prev_WP; // last waypoint
static struct Location current_loc; // current location
static struct Location next_WP; // next waypoint
static struct Location guided_WP; // guided mode waypoint
static struct Location next_nav_command; // command preloaded
static struct Location next_nonnav_command; // command preloaded
static long target_altitude; // used for altitude management between waypoints
static long offset_altitude; // used for altitude management between waypoints
static bool home_is_set; // Flag for if we have g_gps lock and have set the home location
// IMU variables
// -------------
static float G_Dt = 0.02; // Integration time for the gyros (DCM algorithm)
// Performance monitoring
// ----------------------
static long perf_mon_timer; // Metric based on accel gain deweighting
static int G_Dt_max = 0; // Max main loop cycle time in milliseconds
static int gps_fix_count = 0;
static int pmTest1 = 0;
// System Timers
// --------------
static unsigned long fast_loopTimer; // Time in miliseconds of main control loop
static unsigned long fast_loopTimeStamp; // Time Stamp when fast loop was complete
static uint8_t delta_ms_fast_loop; // Delta Time in miliseconds
static int mainLoop_count;
static unsigned long medium_loopTimer; // Time in miliseconds of medium loop
static byte medium_loopCounter; // Counters for branching from main control loop to slower loops
static uint8_t delta_ms_medium_loop;
static byte slow_loopCounter;
static byte superslow_loopCounter;
static byte counter_one_herz;
static unsigned long nav_loopTimer; // used to track the elapsed time for GPS nav
static unsigned long dTnav; // Delta Time in milliseconds for navigation computations
static float load; // % MCU cycles used
AP_Relay relay;
// Camera/Antenna mount tracking and stabilisation stuff
// --------------------------------------
#if MOUNT == ENABLED
AP_Mount camera_mount(g_gps, &dcm);
#endif
////////////////////////////////////////////////////////////////////////////////
// Top-level logic
////////////////////////////////////////////////////////////////////////////////
void setup() {
memcheck_init();
init_ardupilot();
}
void loop()
{
// We want this to execute at 50Hz if possible
// -------------------------------------------
if (millis()-fast_loopTimer > 19) {
delta_ms_fast_loop = millis() - fast_loopTimer;
load = (float)(fast_loopTimeStamp - fast_loopTimer)/delta_ms_fast_loop;
G_Dt = (float)delta_ms_fast_loop / 1000.f;
fast_loopTimer = millis();
mainLoop_count++;
// Execute the fast loop
// ---------------------
fast_loop();
// Execute the medium loop
// -----------------------
medium_loop();
counter_one_herz++;
if(counter_one_herz == 50){
one_second_loop();
counter_one_herz = 0;
}
if (millis() - perf_mon_timer > 20000) {
if (mainLoop_count != 0) {
if (g.log_bitmask & MASK_LOG_PM)
#if HIL_MODE != HIL_MODE_ATTITUDE
Log_Write_Performance();
#endif
resetPerfData();
}
}
fast_loopTimeStamp = millis();
}
}
// Main loop 50Hz
static void fast_loop()
{
// This is the fast loop - we want it to execute at 50Hz if possible
// -----------------------------------------------------------------
if (delta_ms_fast_loop > G_Dt_max)
G_Dt_max = delta_ms_fast_loop;
// Read radio
// ----------
read_radio();
// try to send any deferred messages if the serial port now has
// some space available
gcs_send_message(MSG_RETRY_DEFERRED);
// check for loss of control signal failsafe condition
// ------------------------------------
check_short_failsafe();
// Read Airspeed
// -------------
if (g.airspeed_enabled == true) {
#if HIL_MODE != HIL_MODE_ATTITUDE
read_airspeed();
#endif
} else if (g.airspeed_enabled == true && HIL_MODE == HIL_MODE_ATTITUDE) {
calc_airspeed_errors();
}
#if HIL_MODE == HIL_MODE_SENSORS
// update hil before dcm update
gcs_update();
#endif
dcm.update_DCM();
// uses the yaw from the DCM to give more accurate turns
calc_bearing_error();
# if HIL_MODE == HIL_MODE_DISABLED
if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST)
Log_Write_Attitude((int)dcm.roll_sensor, (int)dcm.pitch_sensor, (uint16_t)dcm.yaw_sensor);
if (g.log_bitmask & MASK_LOG_RAW)
Log_Write_Raw();
#endif
// inertial navigation
// ------------------
#if INERTIAL_NAVIGATION == ENABLED
// TODO: implement inertial nav function
inertialNavigation();
#endif
// custom code/exceptions for flight modes
// ---------------------------------------
update_current_flight_mode();
// apply desired roll, pitch and yaw to the plane
// ----------------------------------------------
if (control_mode > MANUAL)
stabilize();
// write out the servo PWM values
// ------------------------------
set_servos();
// XXX is it appropriate to be doing the comms below on the fast loop?
gcs_update();
gcs_data_stream_send(45,1000);
}
static void medium_loop()
{
#if MOUNT == ENABLED
camera_mount.update_mount_position();
#endif
// This is the start of the medium (10 Hz) loop pieces
// -----------------------------------------
switch(medium_loopCounter) {
// This case deals with the GPS
//-------------------------------
case 0:
medium_loopCounter++;
if(GPS_enabled) update_GPS();
#if HIL_MODE != HIL_MODE_ATTITUDE
if(g.compass_enabled){
compass.read(); // Read magnetometer
compass.calculate(dcm.get_dcm_matrix()); // Calculate heading
compass.null_offsets(dcm.get_dcm_matrix());
}
#endif
/*{
Serial.print(dcm.roll_sensor, DEC); Serial.printf_P(PSTR("\t"));
Serial.print(dcm.pitch_sensor, DEC); Serial.printf_P(PSTR("\t"));
Serial.print(dcm.yaw_sensor, DEC); Serial.printf_P(PSTR("\t"));
Vector3f tempaccel = imu.get_accel();
Serial.print(tempaccel.x, DEC); Serial.printf_P(PSTR("\t"));
Serial.print(tempaccel.y, DEC); Serial.printf_P(PSTR("\t"));
Serial.println(tempaccel.z, DEC);
}*/
break;
// This case performs some navigation computations
//------------------------------------------------
case 1:
medium_loopCounter++;
if(g_gps->new_data){
g_gps->new_data = false;
dTnav = millis() - nav_loopTimer;
nav_loopTimer = millis();
// calculate the plane's desired bearing
// -------------------------------------
navigate();
}
break;
// command processing
//------------------------------
case 2:
medium_loopCounter++;
// Read altitude from sensors
// ------------------
update_alt();
if(g.sonar_enabled) sonar_alt = sonar.read();
// altitude smoothing
// ------------------
if (control_mode != FLY_BY_WIRE_B)
calc_altitude_error();
// perform next command
// --------------------
update_commands();
break;
// This case deals with sending high rate telemetry
//-------------------------------------------------
case 3:
medium_loopCounter++;
#if HIL_MODE != HIL_MODE_ATTITUDE
if ((g.log_bitmask & MASK_LOG_ATTITUDE_MED) && !(g.log_bitmask & MASK_LOG_ATTITUDE_FAST))
Log_Write_Attitude((int)dcm.roll_sensor, (int)dcm.pitch_sensor, (uint16_t)dcm.yaw_sensor);
if (g.log_bitmask & MASK_LOG_CTUN)
Log_Write_Control_Tuning();
#endif
if (g.log_bitmask & MASK_LOG_NTUN)
Log_Write_Nav_Tuning();
if (g.log_bitmask & MASK_LOG_GPS)
Log_Write_GPS(g_gps->time, current_loc.lat, current_loc.lng, g_gps->altitude, current_loc.alt, (long) g_gps->ground_speed, g_gps->ground_course, g_gps->fix, g_gps->num_sats);
// send all requested output streams with rates requested
// between 5 and 45 Hz
gcs_data_stream_send(5,45);
break;
// This case controls the slow loop
//---------------------------------
case 4:
medium_loopCounter = 0;
delta_ms_medium_loop = millis() - medium_loopTimer;
medium_loopTimer = millis();
if (g.battery_monitoring != 0){
read_battery();
}
slow_loop();
break;
}
}
static void slow_loop()
{
// This is the slow (3 1/3 Hz) loop pieces
//----------------------------------------
switch (slow_loopCounter){
case 0:
slow_loopCounter++;
check_long_failsafe();
superslow_loopCounter++;
if(superslow_loopCounter >=200) { // 200 = Execute every minute
#if HIL_MODE != HIL_MODE_ATTITUDE
if(g.compass_enabled) {
compass.save_offsets();
}
#endif
superslow_loopCounter = 0;
}
break;
case 1:
slow_loopCounter++;
// Read 3-position switch on radio
// -------------------------------
read_control_switch();
// Read Control Surfaces/Mix switches
// ----------------------------------
update_servo_switches();
update_aux_servo_function(&g.rc_5, &g.rc_6, &g.rc_7, &g.rc_8);
#if MOUNT == ENABLED
camera_mount.update_mount_type();
#endif
break;
case 2:
slow_loopCounter = 0;
update_events();
mavlink_system.sysid = g.sysid_this_mav; // This is just an ugly hack to keep mavlink_system.sysid sync'd with our parameter
gcs_data_stream_send(3,5);
#if USB_MUX_PIN > 0
check_usb_mux();
#endif
break;
}
}
static void one_second_loop()
{
if (g.log_bitmask & MASK_LOG_CUR)
Log_Write_Current();
// send a heartbeat
gcs_send_message(MSG_HEARTBEAT);
gcs_data_stream_send(1,3);
}
static void update_GPS(void)
{
g_gps->update();
update_GPS_light();
if (g_gps->new_data && g_gps->fix) {
// for performance
// ---------------
gps_fix_count++;
if(ground_start_count > 1){
ground_start_count--;
ground_start_avg += g_gps->ground_speed;
} else if (ground_start_count == 1) {
// We countdown N number of good GPS fixes
// so that the altitude is more accurate
// -------------------------------------
if (current_loc.lat == 0) {
ground_start_count = 5;
} else {
if(ENABLE_AIR_START == 1 && (ground_start_avg / 5) < SPEEDFILT){
startup_ground();
if (g.log_bitmask & MASK_LOG_CMD)
Log_Write_Startup(TYPE_GROUNDSTART_MSG);
init_home();
} else if (ENABLE_AIR_START == 0) {
init_home();
}
ground_start_count = 0;
}
}
current_loc.lng = g_gps->longitude; // Lon * 10**7
current_loc.lat = g_gps->latitude; // Lat * 10**7
}
}
static void update_current_flight_mode(void)
{
if(control_mode == AUTO){
crash_checker();
switch(nav_command_ID){
case MAV_CMD_NAV_TAKEOFF:
if (hold_course > -1) {
calc_nav_roll();
} else {
nav_roll = 0;
}
if (g.airspeed_enabled == true)
{
calc_nav_pitch();
if (nav_pitch < (long)takeoff_pitch) nav_pitch = (long)takeoff_pitch;
} else {
nav_pitch = (long)((float)g_gps->ground_speed / (float)g.airspeed_cruise * (float)takeoff_pitch * 0.5);
nav_pitch = constrain(nav_pitch, 500l, (long)takeoff_pitch);
}
g.channel_throttle.servo_out = g.throttle_max; //TODO: Replace with THROTTLE_TAKEOFF or other method of controlling throttle
// What is the case for doing something else? Why wouldn't you want max throttle for TO?
// ******************************
break;
case MAV_CMD_NAV_LAND:
calc_nav_roll();
if (g.airspeed_enabled == true){
calc_nav_pitch();
calc_throttle();
}else{
calc_nav_pitch(); // calculate nav_pitch just to use for calc_throttle
calc_throttle(); // throttle based on altitude error
nav_pitch = landing_pitch; // pitch held constant
}
if (land_complete){
g.channel_throttle.servo_out = 0;
}
break;
default:
hold_course = -1;
calc_nav_roll();
calc_nav_pitch();
calc_throttle();
break;
}
}else{
switch(control_mode){
case RTL:
case LOITER:
case GUIDED:
hold_course = -1;
crash_checker();
calc_nav_roll();
calc_nav_pitch();
calc_throttle();
break;
case FLY_BY_WIRE_A:
// set nav_roll and nav_pitch using sticks
nav_roll = g.channel_roll.norm_input() * g.roll_limit;
nav_pitch = g.channel_pitch.norm_input() * (-1) * g.pitch_limit_min;
// We use pitch_min above because it is usually greater magnitude then pitch_max. -1 is to compensate for its sign.
nav_pitch = constrain(nav_pitch, -3000, 3000); // trying to give more pitch authority
if (inverted_flight) nav_pitch = -nav_pitch;
break;
case FLY_BY_WIRE_B:
// Substitute stick inputs for Navigation control output
// We use g.pitch_limit_min because its magnitude is
// normally greater than g.pitch_limit_max
nav_roll = g.channel_roll.norm_input() * g.roll_limit;
altitude_error = g.channel_pitch.norm_input() * g.pitch_limit_min;
if ((current_loc.alt>=home.alt+g.FBWB_min_altitude) || (g.FBWB_min_altitude == -1)) {
altitude_error = g.channel_pitch.norm_input() * g.pitch_limit_min;
} else {
if (g.channel_pitch.norm_input()<0)
altitude_error =( (home.alt + g.FBWB_min_altitude) - current_loc.alt) + g.channel_pitch.norm_input() * g.pitch_limit_min ;
else altitude_error =( (home.alt + g.FBWB_min_altitude) - current_loc.alt) ;
}
if (g.airspeed_enabled == true)
{
airspeed_fbwB = ((int)(g.flybywire_airspeed_max -
g.flybywire_airspeed_min) *
g.channel_throttle.servo_out) +
((int)g.flybywire_airspeed_min * 100);
airspeed_energy_error = (long)(((long)airspeed_fbwB *
(long)airspeed_fbwB) -
((long)airspeed * (long)airspeed))/20000;
airspeed_error = (airspeed_error - airspeed);
}
calc_throttle();
calc_nav_pitch();
break;
case STABILIZE:
nav_roll = 0;
nav_pitch = 0;
// throttle is passthrough
break;
case CIRCLE:
// we have no GPS installed and have lost radio contact
// or we just want to fly around in a gentle circle w/o GPS
// ----------------------------------------------------
nav_roll = g.roll_limit / 3;
nav_pitch = 0;
if (failsafe != FAILSAFE_NONE){
g.channel_throttle.servo_out = g.throttle_cruise;
}
break;
case MANUAL:
// servo_out is for Sim control only
// ---------------------------------
g.channel_roll.servo_out = g.channel_roll.pwm_to_angle();
g.channel_pitch.servo_out = g.channel_pitch.pwm_to_angle();
g.channel_rudder.servo_out = g.channel_rudder.pwm_to_angle();
break;
//roll: -13788.000, pitch: -13698.000, thr: 0.000, rud: -13742.000
}
}
}
static void update_navigation()
{
// wp_distance is in ACTUAL meters, not the *100 meters we get from the GPS
// ------------------------------------------------------------------------
// distance and bearing calcs only
if(control_mode == AUTO){
verify_commands();
}else{
switch(control_mode){
case LOITER:
case RTL:
case GUIDED:
update_loiter();
calc_bearing_error();
break;
}
}
}
static void update_alt()
{
#if HIL_MODE == HIL_MODE_ATTITUDE
current_loc.alt = g_gps->altitude;
#else
// this function is in place to potentially add a sonar sensor in the future
//altitude_sensor = BARO;
current_loc.alt = (1 - g.altitude_mix) * g_gps->altitude; // alt_MSL centimeters (meters * 100)
current_loc.alt += g.altitude_mix * (read_barometer() + home.alt);
#endif
// Calculate new climb rate
//if(medium_loopCounter == 0 && slow_loopCounter == 0)
// add_altitude_data(millis() / 100, g_gps->altitude / 10);
}