ardupilot/libraries/AP_RangeFinder/AP_RangeFinder_PulsedLightLRF.cpp
Lucas De Marchi a372f33cc0 AP_RangeFinder: fix PulsedLightLRF detection
- Most of the boards use bus 1 for first I2C
    - If the bus doesn't exist, let the detect() method fail when it
      call start_reading(), because _dev would be invalid
2016-07-22 13:18:36 -03:00

119 lines
3.6 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_RangeFinder_PulsedLightLRF.h"
#include <utility>
#include <AP_HAL/AP_HAL.h>
#include <AP_HAL/utility/sparse-endian.h>
extern const AP_HAL::HAL& hal;
/*
The constructor also initializes the rangefinder. Note that this
constructor is not called until detect() returns true, so we
already know that we should setup the rangefinder
*/
AP_RangeFinder_PulsedLightLRF::AP_RangeFinder_PulsedLightLRF(RangeFinder &_ranger, uint8_t instance,
RangeFinder::RangeFinder_State &_state)
: AP_RangeFinder_Backend(_ranger, instance, _state)
, _dev(hal.i2c_mgr->get_device(1, AP_RANGEFINDER_PULSEDLIGHTLRF_ADDR))
{
}
/*
detect if a PulsedLight rangefinder is connected. We'll detect by
trying to take a reading on I2C. If we get a result the sensor is
there.
*/
AP_RangeFinder_Backend *AP_RangeFinder_PulsedLightLRF::detect(RangeFinder &_ranger, uint8_t instance,
RangeFinder::RangeFinder_State &_state)
{
AP_RangeFinder_PulsedLightLRF *sensor
= new AP_RangeFinder_PulsedLightLRF(_ranger, instance, _state);
if (!sensor || !sensor->start_reading()) {
delete sensor;
return nullptr;
}
// give time for the sensor to process the request
hal.scheduler->delay(50);
uint16_t reading_cm;
if (!sensor->get_reading(reading_cm)) {
delete sensor;
return nullptr;
}
return sensor;
}
// start_reading() - ask sensor to make a range reading
bool AP_RangeFinder_PulsedLightLRF::start_reading()
{
if (!_dev || !_dev->get_semaphore()->take(1)) {
return false;
}
// send command to take reading
bool ret = _dev->write_register(AP_RANGEFINDER_PULSEDLIGHTLRF_MEASURE_REG,
AP_RANGEFINDER_PULSEDLIGHTLRF_MSRREG_ACQUIRE);
_dev->get_semaphore()->give();
return ret;
}
// read - return last value measured by sensor
bool AP_RangeFinder_PulsedLightLRF::get_reading(uint16_t &reading_cm)
{
be16_t val;
if (!_dev->get_semaphore()->take(1)) {
return false;
}
// read the high and low byte distance registers
bool ret = _dev->read_registers(AP_RANGEFINDER_PULSEDLIGHTLRF_DISTHIGH_REG,
(uint8_t *) &val, sizeof(val));
_dev->get_semaphore()->give();
if (!ret) {
return false;
}
// combine results into distance
reading_cm = be16toh(val);
// kick off another reading for next time
// To-Do: replace this with continuous mode
hal.scheduler->delay_microseconds(200);
start_reading();
return true;
}
/*
update the state of the sensor
*/
void AP_RangeFinder_PulsedLightLRF::update(void)
{
if (get_reading(state.distance_cm)) {
// update range_valid state based on distance measured
update_status();
} else {
set_status(RangeFinder::RangeFinder_NoData);
}
}