ardupilot/ArduCopterMega/test.pde
jasonshort 35bf288abd New PIDs - I rewrote the control laws from scratch to add a PI Rate function. The end result should fly nearly identically to the current version. The nice detail is that we can use NG PID values for easy transition!
Before: ->  After
Stabilize P –> Stabilize P (Use NG values, or 8.3 x the older AC2 value)
Stabilize I –> Stabilize I (Stays same value)
Stabilize D –> Rate P (Stays same value)
–> Rate I (new)
 
Added a new value – an I term for rate. The old stabilization routines did not use this term. Please refer to the config.h file to read more about the new PIDs.
Added framework for using DCM corrected Accelerometer rates. Code is commented out for now.
Added set home at Arming.
Crosstrack is now a full PID loop, rather than just a P gain for more control. 
Throttle now slews when switching out of Alt hold or Auto modes for less jarring transitions
Sonar and Baro PIDs are now combined into a throttle PID Yaw control is completely re-written.
Added Octa_Quad support - Max



git-svn-id: https://arducopter.googlecode.com/svn/trunk@2836 f9c3cf11-9bcb-44bc-f272-b75c42450872
2011-07-11 00:47:08 +00:00

1022 lines
23 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
// These are function definitions so the Menu can be constructed before the functions
// are defined below. Order matters to the compiler.
static int8_t test_radio_pwm(uint8_t argc, const Menu::arg *argv);
static int8_t test_radio(uint8_t argc, const Menu::arg *argv);
static int8_t test_failsafe(uint8_t argc, const Menu::arg *argv);
//static int8_t test_stabilize(uint8_t argc, const Menu::arg *argv);
static int8_t test_gps(uint8_t argc, const Menu::arg *argv);
static int8_t test_tri(uint8_t argc, const Menu::arg *argv);
static int8_t test_adc(uint8_t argc, const Menu::arg *argv);
static int8_t test_imu(uint8_t argc, const Menu::arg *argv);
//static int8_t test_dcm(uint8_t argc, const Menu::arg *argv);
//static int8_t test_omega(uint8_t argc, const Menu::arg *argv);
static int8_t test_battery(uint8_t argc, const Menu::arg *argv);
//static int8_t test_wp_nav(uint8_t argc, const Menu::arg *argv);
static int8_t test_tuning(uint8_t argc, const Menu::arg *argv);
static int8_t test_current(uint8_t argc, const Menu::arg *argv);
static int8_t test_relay(uint8_t argc, const Menu::arg *argv);
static int8_t test_wp(uint8_t argc, const Menu::arg *argv);
static int8_t test_baro(uint8_t argc, const Menu::arg *argv);
static int8_t test_mag(uint8_t argc, const Menu::arg *argv);
static int8_t test_sonar(uint8_t argc, const Menu::arg *argv);
static int8_t test_xbee(uint8_t argc, const Menu::arg *argv);
static int8_t test_eedump(uint8_t argc, const Menu::arg *argv);
static int8_t test_rawgps(uint8_t argc, const Menu::arg *argv);
static int8_t test_mission(uint8_t argc, const Menu::arg *argv);
// This is the help function
// PSTR is an AVR macro to read strings from flash memory
// printf_P is a version of printf that reads from flash memory
/*static int8_t help_test(uint8_t argc, const Menu::arg *argv)
{
Serial.printf_P(PSTR("\n"
"Commands:\n"
" radio\n"
" servos\n"
" g_gps\n"
" imu\n"
" battery\n"
"\n"));
}*/
// Creates a constant array of structs representing menu options
// and stores them in Flash memory, not RAM.
// User enters the string in the console to call the functions on the right.
// See class Menu in AP_Coommon for implementation details
const struct Menu::command test_menu_commands[] PROGMEM = {
{"pwm", test_radio_pwm},
{"radio", test_radio},
{"failsafe", test_failsafe},
// {"stabilize", test_stabilize},
{"gps", test_gps},
#if HIL_MODE != HIL_MODE_ATTITUDE
{"adc", test_adc},
#endif
{"imu", test_imu},
//{"dcm", test_dcm},
//{"omega", test_omega},
{"battery", test_battery},
{"tune", test_tuning},
{"tri", test_tri},
{"current", test_current},
{"relay", test_relay},
{"waypoints", test_wp},
#if HIL_MODE != HIL_MODE_ATTITUDE
{"altitude", test_baro},
#endif
{"sonar", test_sonar},
{"compass", test_mag},
{"xbee", test_xbee},
{"eedump", test_eedump},
{"rawgps", test_rawgps},
{"mission", test_mission},
//{"wp", test_wp_nav},
};
// A Macro to create the Menu
MENU(test_menu, "test", test_menu_commands);
int8_t
test_mode(uint8_t argc, const Menu::arg *argv)
{
Serial.printf_P(PSTR("Test Mode\n\n"));
test_menu.run();
}
static int8_t
test_eedump(uint8_t argc, const Menu::arg *argv)
{
int i, j;
// hexdump the EEPROM
for (i = 0; i < EEPROM_MAX_ADDR; i += 16) {
Serial.printf_P(PSTR("%04x:"), i);
for (j = 0; j < 16; j++)
Serial.printf_P(PSTR(" %02x"), eeprom_read_byte((const uint8_t *)(i + j)));
Serial.println();
}
return(0);
}
static int8_t
test_radio_pwm(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
while(1){
delay(20);
// Filters radio input - adjust filters in the radio.pde file
// ----------------------------------------------------------
read_radio();
// servo Yaw
//APM_RC.OutputCh(CH_7, g.rc_4.radio_out);
Serial.printf_P(PSTR("IN: 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n"),
g.rc_1.radio_in,
g.rc_2.radio_in,
g.rc_3.radio_in,
g.rc_4.radio_in,
g.rc_5.radio_in,
g.rc_6.radio_in,
g.rc_7.radio_in,
g.rc_8.radio_in);
if(Serial.available() > 0){
return (0);
}
}
}
static int8_t
test_tri(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
while(1){
delay(20);
// Filters radio input - adjust filters in the radio.pde file
// ----------------------------------------------------------
read_radio();
g.rc_4.servo_out = g.rc_4.control_in;
g.rc_4.calc_pwm();
Serial.printf_P(PSTR("input: %d\toutput%d\n"),
g.rc_4.control_in,
g.rc_4.radio_out);
APM_RC.OutputCh(CH_7, g.rc_4.radio_out);
if(Serial.available() > 0){
return (0);
}
}
}
static int8_t
test_radio(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
while(1){
delay(20);
read_radio();
Serial.printf_P(PSTR("IN 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\n"),
g.rc_1.control_in,
g.rc_2.control_in,
g.rc_3.control_in,
g.rc_4.control_in,
g.rc_5.control_in,
g.rc_6.control_in,
g.rc_7.control_in);
//Serial.printf_P(PSTR("OUT 1: %d\t2: %d\t3: %d\t4: %d\n"), (g.rc_1.servo_out / 100), (g.rc_2.servo_out / 100), g.rc_3.servo_out, (g.rc_4.servo_out / 100));
/*Serial.printf_P(PSTR( "min: %d"
"\t in: %d"
"\t pwm_in: %d"
"\t sout: %d"
"\t pwm_out %d\n"),
g.rc_3.radio_min,
g.rc_3.control_in,
g.rc_3.radio_in,
g.rc_3.servo_out,
g.rc_3.pwm_out
);
*/
if(Serial.available() > 0){
return (0);
}
}
}
/*
static int8_t
test_wp_nav(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
dTnav = 200;
current_loc.lat = 32.9513090 * t7;
current_loc.lng = -117.2381700 * t7;
do_loiter_at_location();
wp_control = LOITER_MODE;
//dTnav: 0, gs: 305, err: 145, int: 0, pitch: 28508160 gps_GC: 0, gps_GS: 305
while(1){
read_radio();
delay(dTnav);
current_loc.lng = (-117.2381700 * t7) + g.rc_1.control_in / 2;
current_loc.lat = (32.9513090 * t7) + g.rc_2.control_in / 2;
navigate();
update_nav_wp();
Serial.printf("Lon_e: %ld, nLon, %ld, Lat_e %ld, nLat %ld\n", long_error, nav_lon, lat_error, nav_lat);
if(Serial.available() > 0){
return (0);
}
}
}
//*/
/*
{
print_hit_enter();
delay(1000);
g.rc_6.set_range(0,900);
g.rc_4.set_angle(9000);
dTnav = 200;
//dTnav: 0, gs: 305, err: 145, int: 0, pitch: 28508160 gps_GC: 0, gps_GS: 305
while(1){
delay(20);
read_radio();
target_bearing = 0;
g_gps->ground_course = g.rc_4.control_in;
g_gps->ground_speed = g.rc_6.control_in;
calc_rate_nav();
Serial.printf(" gps_GC: %ld, gps_GS: %d\n", g_gps->ground_course, g_gps->ground_speed);
if(Serial.available() > 0){
return (0);
}
}
}
*/
static int8_t
test_failsafe(uint8_t argc, const Menu::arg *argv)
{
byte fail_test;
print_hit_enter();
for(int i = 0; i < 50; i++){
delay(20);
read_radio();
}
oldSwitchPosition = readSwitch();
Serial.printf_P(PSTR("Unplug battery, throttle in neutral, turn off radio.\n"));
while(g.rc_3.control_in > 0){
delay(20);
read_radio();
}
while(1){
delay(20);
read_radio();
if(g.rc_3.control_in > 0){
Serial.printf_P(PSTR("THROTTLE CHANGED %d \n"), g.rc_3.control_in);
fail_test++;
}
if(oldSwitchPosition != readSwitch()){
Serial.printf_P(PSTR("CONTROL MODE CHANGED: "));
Serial.println(flight_mode_strings[readSwitch()]);
fail_test++;
}
if(g.throttle_fs_enabled && g.rc_3.get_failsafe()){
Serial.printf_P(PSTR("THROTTLE FAILSAFE ACTIVATED: %d, "), g.rc_3.radio_in);
Serial.println(flight_mode_strings[readSwitch()]);
fail_test++;
}
if(fail_test > 0){
return (0);
}
if(Serial.available() > 0){
Serial.printf_P(PSTR("LOS caused no change in ACM.\n"));
return (0);
}
}
}
/*static int8_t
test_stabilize(uint8_t argc, const Menu::arg *argv)
{
static byte ts_num;
print_hit_enter();
delay(1000);
// setup the radio
// ---------------
init_rc_in();
control_mode = STABILIZE;
Serial.printf_P(PSTR("g.pid_stabilize_roll.kP: %4.4f\n"), g.pid_stabilize_roll.kP());
Serial.printf_P(PSTR("max_stabilize_dampener:%d\n\n "), max_stabilize_dampener);
motor_auto_armed = false;
motor_armed = true;
while(1){
// 50 hz
if (millis() - fast_loopTimer > 19) {
delta_ms_fast_loop = millis() - fast_loopTimer;
fast_loopTimer = millis();
G_Dt = (float)delta_ms_fast_loop / 1000.f;
if(g.compass_enabled){
medium_loopCounter++;
if(medium_loopCounter == 5){
compass.read(); // Read magnetometer
compass.calculate(dcm.roll, dcm.pitch); // Calculate heading
compass.null_offsets(dcm.get_dcm_matrix());
medium_loopCounter = 0;
}
}
// for trim features
read_trim_switch();
// Filters radio input - adjust filters in the radio.pde file
// ----------------------------------------------------------
read_radio();
// IMU
// ---
read_AHRS();
// allow us to zero out sensors with control switches
if(g.rc_5.control_in < 600){
dcm.roll_sensor = dcm.pitch_sensor = 0;
}
// custom code/exceptions for flight modes
// ---------------------------------------
update_current_flight_mode();
// write out the servo PWM values
// ------------------------------
set_servos_4();
ts_num++;
if (ts_num > 10){
ts_num = 0;
Serial.printf_P(PSTR("r: %d, p:%d, rc1:%d, "),
(int)(dcm.roll_sensor/100),
(int)(dcm.pitch_sensor/100),
g.rc_1.pwm_out);
print_motor_out();
}
// R: 1417, L: 1453 F: 1453 B: 1417
//Serial.printf_P(PSTR("timer: %d, r: %d\tp: %d\t y: %d\n"), (int)delta_ms_fast_loop, ((int)dcm.roll_sensor/100), ((int)dcm.pitch_sensor/100), ((uint16_t)dcm.yaw_sensor/100));
//Serial.printf_P(PSTR("timer: %d, r: %d\tp: %d\t y: %d\n"), (int)delta_ms_fast_loop, ((int)dcm.roll_sensor/100), ((int)dcm.pitch_sensor/100), ((uint16_t)dcm.yaw_sensor/100));
if(Serial.available() > 0){
if(g.compass_enabled){
compass.save_offsets();
report_compass();
}
return (0);
}
}
}
}
*/
#if HIL_MODE != HIL_MODE_ATTITUDE
static int8_t
test_adc(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
Serial.printf_P(PSTR("ADC\n"));
delay(1000);
while(1){
for(int i = 0; i < 9; i++){
Serial.printf_P(PSTR("%d,"),adc.Ch(i));
}
Serial.println();
delay(20);
if(Serial.available() > 0){
return (0);
}
}
}
#endif
static int8_t
test_imu(uint8_t argc, const Menu::arg *argv)
{
//Serial.printf_P(PSTR("Calibrating."));
//dcm.kp_yaw(0.02);
//dcm.ki_yaw(0);
report_imu();
imu.init_gyro();
report_imu();
print_hit_enter();
delay(1000);
//float cos_roll, sin_roll, cos_pitch, sin_pitch, cos_yaw, sin_yaw;
fast_loopTimer = millis();
while(1){
//delay(20);
if (millis() - fast_loopTimer >= 5) {
delta_ms_fast_loop = millis() - fast_loopTimer;
G_Dt = (float)delta_ms_fast_loop / 1000.f; // used by DCM integrator
fast_loopTimer = millis();
// IMU
// ---
read_AHRS();
Vector3f accels = imu.get_accel();
Vector3f gyros = imu.get_gyro();
//Vector3f accel_filt = imu.get_accel_filtered();
//accels_rot = dcm.get_dcm_matrix() * accel_filt;
medium_loopCounter++;
if(medium_loopCounter == 4){
update_trig();
}
if(medium_loopCounter == 20){
read_radio();
medium_loopCounter = 0;
//tuning();
//dcm.kp_roll_pitch((float)g.rc_6.control_in / 2000.0);
/*
Serial.printf_P(PSTR("r: %ld\tp: %ld\t y: %ld, kp:%1.4f, kp:%1.4f \n"),
dcm.roll_sensor,
dcm.pitch_sensor,
dcm.yaw_sensor,
dcm.kp_roll_pitch(),
(float)g.rc_6.control_in / 2000.0);
*/
Serial.printf_P(PSTR("%ld, %ld, %ld\n"),
dcm.roll_sensor,
dcm.pitch_sensor,
dcm.yaw_sensor);
if(g.compass_enabled){
compass.read(); // Read magnetometer
compass.calculate(dcm.get_dcm_matrix());
}
}
// We are using the IMU
// ---------------------
/*
Serial.printf_P(PSTR("A: %4.4f, %4.4f, %4.4f\t"
"G: %4.4f, %4.4f, %4.4f\t"),
accels.x, accels.y, accels.z,
gyros.x, gyros.y, gyros.z);
*/
/*
Serial.printf_P(PSTR("cp: %1.2f, sp: %1.2f, cr: %1.2f, sr: %1.2f, cy: %1.2f, sy: %1.2f,\n"),
cos_pitch_x,
sin_pitch_y,
cos_roll_x,
sin_roll_y,
cos_yaw_x, // x
sin_yaw_y); // y
//*/
//
Log_Write_Raw();
}
if(Serial.available() > 0){
return (0);
}
}
}
static int8_t
test_gps(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
while(1){
delay(333);
// Blink GPS LED if we don't have a fix
// ------------------------------------
update_GPS_light();
g_gps->update();
if (g_gps->new_data){
Serial.printf_P(PSTR("Lat: %ld, Lon %ld, Alt: %ldm, #sats: %d\n"),
g_gps->latitude,
g_gps->longitude,
g_gps->altitude/100,
g_gps->num_sats);
g_gps->new_data = false;
}else{
Serial.print(".");
}
if(Serial.available() > 0){
return (0);
}
}
}
/*
static int8_t
test_dcm(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
Serial.printf_P(PSTR("Gyro | Accel\n"));
Vector3f _cam_vector;
Vector3f _out_vector;
G_Dt = .02;
while(1){
for(byte i = 0; i <= 50; i++){
delay(20);
// IMU
// ---
read_AHRS();
}
Matrix3f temp = dcm.get_dcm_matrix();
Matrix3f temp_t = dcm.get_dcm_transposed();
Serial.printf_P(PSTR("dcm\n"
"%4.4f \t %4.4f \t %4.4f \n"
"%4.4f \t %4.4f \t %4.4f \n"
"%4.4f \t %4.4f \t %4.4f \n\n"),
temp.a.x, temp.a.y, temp.a.z,
temp.b.x, temp.b.y, temp.b.z,
temp.c.x, temp.c.y, temp.c.z);
int _pitch = degrees(-asin(temp.c.x));
int _roll = degrees(atan2(temp.c.y, temp.c.z));
int _yaw = degrees(atan2(temp.b.x, temp.a.x));
Serial.printf_P(PSTR( "angles\n"
"%d \t %d \t %d\n\n"),
_pitch,
_roll,
_yaw);
//_out_vector = _cam_vector * temp;
//Serial.printf_P(PSTR( "cam\n"
// "%d \t %d \t %d\n\n"),
// (int)temp.a.x * 100, (int)temp.a.y * 100, (int)temp.a.x * 100);
if(Serial.available() > 0){
return (0);
}
}
}
*/
/*
static int8_t
test_dcm(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
Serial.printf_P(PSTR("Gyro | Accel\n"));
delay(1000);
while(1){
Vector3f accels = dcm.get_accel();
Serial.print("accels.z:");
Serial.print(accels.z);
Serial.print("omega.z:");
Serial.print(omega.z);
delay(100);
if(Serial.available() > 0){
return (0);
}
}
}
*/
/*static int8_t
test_omega(uint8_t argc, const Menu::arg *argv)
{
static byte ts_num;
float old_yaw;
print_hit_enter();
delay(1000);
Serial.printf_P(PSTR("Omega"));
delay(1000);
G_Dt = .02;
while(1){
delay(20);
// IMU
// ---
read_AHRS();
float my_oz = (dcm.yaw - old_yaw) * 50;
old_yaw = dcm.yaw;
ts_num++;
if (ts_num > 2){
ts_num = 0;
//Serial.printf_P(PSTR("R: %4.4f\tP: %4.4f\tY: %4.4f\tY: %4.4f\n"), omega.x, omega.y, omega.z, my_oz);
Serial.printf_P(PSTR(" Yaw: %ld\tY: %4.4f\tY: %4.4f\n"), dcm.yaw_sensor, omega.z, my_oz);
}
if(Serial.available() > 0){
return (0);
}
}
return (0);
}
//*/
static int8_t
test_battery(uint8_t argc, const Menu::arg *argv)
{
#if BATTERY_EVENT == 1
for (int i = 0; i < 20; i++){
delay(20);
read_battery();
}
Serial.printf_P(PSTR("Volts: 1:%2.2f, 2:%2.2f, 3:%2.2f, 4:%2.2f\n"),
battery_voltage1,
battery_voltage2,
battery_voltage3,
battery_voltage4);
#else
Serial.printf_P(PSTR("Not enabled\n"));
#endif
return (0);
}
static int8_t
test_tuning(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
while(1){
delay(200);
read_radio();
//Outer Loop : Attitude
#if CHANNEL_6_TUNING == CH6_NONE
Serial.printf_P(PSTR("disabled\n"));
#elif CHANNEL_6_TUNING == CH6_STABILIZE_KP
Serial.printf_P(PSTR("stab kP: %1.3f\n"), ((float)g.rc_6.control_in / 1000.0));
#elif CHANNEL_6_TUNING == CH6_STABILIZE_KI
Serial.printf_P(PSTR("stab kI: %1.3f\n"), ((float)g.rc_6.control_in / 1000.0));
#elif CHANNEL_6_TUNING == CH6_YAW_KP
Serial.printf_P(PSTR("yaw Hold kP: %1.3f\n"), ((float)g.rc_6.control_in / 1000.0)); // range from 0 ~ 5.0
#elif CHANNEL_6_TUNING == CH6_YAW_KI
Serial.printf_P(PSTR("yaw Hold kI: %1.3f\n"), ((float)g.rc_6.control_in / 1000.0));
//Inner Loop : Rate
#elif CHANNEL_6_TUNING == CH6_RATE_KP
Serial.printf_P(PSTR("rate kD: %1.3f\n"), ((float)g.rc_6.control_in / 1000.0));
#elif CHANNEL_6_TUNING == CH6_RATE_KI
Serial.printf_P(PSTR("rate kI: %1.3f\n"), ((float)g.rc_6.control_in / 1000.0));
#elif CHANNEL_6_TUNING == CH6_YAW_RATE_KP
Serial.printf_P(PSTR("yaw rate kP: %1.3f\n"), ((float)g.rc_6.control_in / 1000.0));
#elif CHANNEL_6_TUNING == CH6_YAW_RATE_KI
Serial.printf_P(PSTR("yaw rate kI: %1.3f\n"), ((float)g.rc_6.control_in / 1000.0));
//Altitude Hold
#elif CHANNEL_6_TUNING == CH6_THROTTLE_KP
Serial.printf_P(PSTR("throttle kP: %1.3f\n"), ((float)g.rc_6.control_in / 1000.0));
#elif CHANNEL_6_TUNING == CH6_THROTTLE_KD
Serial.printf_P(PSTR("baro kD: %1.3f\n"), ((float)g.rc_6.control_in / 1000.0));
//Extras
#elif CHANNEL_6_TUNING == CH6_TOP_BOTTOM_RATIO
Serial.printf_P(PSTR("Y6: %1.3f\n"), ((float)g.rc_6.control_in / 1000.0));
#elif CHANNEL_6_TUNING == CH6_PMAX
Serial.printf_P(PSTR("Y6: %d\n"), (g.rc_6.control_in * 2));
#endif
if(Serial.available() > 0){
return (0);
}
}
}
static int8_t
test_current(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delta_ms_medium_loop = 100;
while(1){
delay(100);
read_radio();
read_battery();
Serial.printf_P(PSTR("V: %4.4f, A: %4.4f, mAh: %4.4f\n"),
battery_voltage,
current_amps,
current_total);
APM_RC.OutputCh(CH_1, g.rc_3.radio_in);
APM_RC.OutputCh(CH_2, g.rc_3.radio_in);
APM_RC.OutputCh(CH_3, g.rc_3.radio_in);
APM_RC.OutputCh(CH_4, g.rc_3.radio_in);
if(Serial.available() > 0){
return (0);
}
}
}
static int8_t
test_relay(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
while(1){
Serial.printf_P(PSTR("Relay on\n"));
relay_on();
delay(3000);
if(Serial.available() > 0){
return (0);
}
Serial.printf_P(PSTR("Relay off\n"));
relay_off();
delay(3000);
if(Serial.available() > 0){
return (0);
}
}
}
static int8_t
test_wp(uint8_t argc, const Menu::arg *argv)
{
delay(1000);
// save the alitude above home option
Serial.printf_P(PSTR("Hold altitude "));
if(g.RTL_altitude < 0){
Serial.printf_P(PSTR("\n"));
}else{
Serial.printf_P(PSTR("of %dm\n"), (int)g.RTL_altitude / 100);
}
Serial.printf_P(PSTR("%d waypoints\n"), (int)g.waypoint_total);
Serial.printf_P(PSTR("Hit radius: %d\n"), (int)g.waypoint_radius);
//Serial.printf_P(PSTR("Loiter radius: %d\n\n"), (int)g.loiter_radius);
report_wp();
return (0);
}
static int8_t test_rawgps(uint8_t argc, const Menu::arg *argv) {
print_hit_enter();
delay(1000);
while(1){
if (Serial3.available()){
digitalWrite(B_LED_PIN, HIGH); // Blink Yellow LED if we are sending data to GPS
Serial1.write(Serial3.read());
digitalWrite(B_LED_PIN, LOW);
}
if (Serial1.available()){
digitalWrite(C_LED_PIN, HIGH); // Blink Red LED if we are receiving data from GPS
Serial3.write(Serial1.read());
digitalWrite(C_LED_PIN, LOW);
}
if(Serial.available() > 0){
return (0);
}
}
}
static int8_t
test_xbee(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
delay(1000);
Serial.printf_P(PSTR("Begin XBee X-CTU Range and RSSI Test:\n"));
while(1){
if (Serial3.available())
Serial3.write(Serial3.read());
if(Serial.available() > 0){
return (0);
}
}
}
#if HIL_MODE != HIL_MODE_ATTITUDE
static int8_t
test_baro(uint8_t argc, const Menu::arg *argv)
{
print_hit_enter();
init_barometer();
while(1){
delay(100);
baro_alt = read_barometer();
Serial.printf_P(PSTR("Baro: %dcm\n"), baro_alt);
if(Serial.available() > 0){
return (0);
}
}
}
#endif
static int8_t
test_mag(uint8_t argc, const Menu::arg *argv)
{
if(g.compass_enabled) {
//Serial.printf_P(PSTR("MAG_ORIENTATION: %d\n"), MAG_ORIENTATION);
print_hit_enter();
while(1){
delay(100);
compass.read();
compass.calculate(dcm.get_dcm_matrix());
Vector3f maggy = compass.get_offsets();
Serial.printf_P(PSTR("Heading: %ld, XYZ: %d, %d, %d,\tXYZoff: %6.2f, %6.2f, %6.2f\n"),
(wrap_360(ToDeg(compass.heading) * 100)) /100,
compass.mag_x,
compass.mag_y,
compass.mag_z,
maggy.x,
maggy.y,
maggy.z);
if(Serial.available() > 0){
return (0);
}
}
} else {
Serial.printf_P(PSTR("Compass: "));
print_enabled(false);
return (0);
}
}
/*
test the sonar
*/
static int8_t
test_sonar(uint8_t argc, const Menu::arg *argv)
{
if(g.sonar_enabled == false){
Serial.printf_P(PSTR("Sonar disabled\n"));
return (0);
}
print_hit_enter();
while(1) {
delay(100);
Serial.printf_P(PSTR("Sonar: %d cm\n"), sonar.read());
if(Serial.available() > 0){
return (0);
}
}
return (0);
}
static int8_t
test_mission(uint8_t argc, const Menu::arg *argv)
{
//write out a basic mission to the EEPROM
/*{
uint8_t id; ///< command id
uint8_t options; ///< options bitmask (1<<0 = relative altitude)
uint8_t p1; ///< param 1
int32_t alt; ///< param 2 - Altitude in centimeters (meters * 100)
int32_t lat; ///< param 3 - Lattitude * 10**7
int32_t lng; ///< param 4 - Longitude * 10**7
}*/
// clear home
{Location t = {0, 0, 0, 0, 0, 0};
set_command_with_index(t,0);}
// CMD opt pitch alt/cm
{Location t = {MAV_CMD_NAV_TAKEOFF, WP_OPTION_RELATIVE, 0, 100, 0, 0};
set_command_with_index(t,1);}
if (!strcmp_P(argv[1].str, PSTR("wp"))) {
// CMD opt
{Location t = {MAV_CMD_NAV_WAYPOINT, WP_OPTION_RELATIVE, 15, 0, 0, 0};
set_command_with_index(t,2);}
// CMD opt
{Location t = {MAV_CMD_NAV_RETURN_TO_LAUNCH, WP_OPTION_YAW, 0, 0, 0, 0};
set_command_with_index(t,3);}
// CMD opt
{Location t = {MAV_CMD_NAV_LAND, 0, 0, 0, 0, 0};
set_command_with_index(t,4);}
} else {
//2250 = 25 meteres
// CMD opt p1 //alt //NS //WE
{Location t = {MAV_CMD_NAV_LOITER_TIME, 0, 10, 0, 0, 0}; // 19
set_command_with_index(t,2);}
// CMD opt dir angle/deg deg/s relative
{Location t = {MAV_CMD_CONDITION_YAW, 0, 1, 360, 60, 1};
set_command_with_index(t,3);}
// CMD opt
{Location t = {MAV_CMD_NAV_LAND, 0, 0, 0, 0, 0};
set_command_with_index(t,4);}
}
g.RTL_altitude.set_and_save(300);
g.waypoint_total.set_and_save(4);
g.waypoint_radius.set_and_save(3);
test_wp(NULL, NULL);
return (0);
}
void print_hit_enter()
{
Serial.printf_P(PSTR("Hit Enter to exit.\n\n"));
}
void fake_out_gps()
{
static float rads;
g_gps->new_data = true;
g_gps->fix = true;
//int length = g.rc_6.control_in;
rads += .05;
if (rads > 6.28){
rads = 0;
}
g_gps->latitude = 377696000; // Y
g_gps->longitude = -1224319000; // X
g_gps->altitude = 9000; // meters * 100
//next_WP.lng = home.lng - length * sin(rads); // X
//next_WP.lat = home.lat + length * cos(rads); // Y
}
void print_motor_out(){
Serial.printf("out: R: %d, L: %d F: %d B: %d\n",
(motor_out[CH_1] - g.rc_3.radio_min),
(motor_out[CH_2] - g.rc_3.radio_min),
(motor_out[CH_3] - g.rc_3.radio_min),
(motor_out[CH_4] - g.rc_3.radio_min));
}