ardupilot/libraries/AP_InertialSensor/AP_InertialSensor_SCHA63T.cpp

457 lines
14 KiB
C++

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* sensor information url
* <https://www.murata.com/ja-jp/products/sensor/gyro/overview/lineup/scha600>.
*/
#include <utility>
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include "AP_InertialSensor_SCHA63T.h"
#include <GCS_MAVLink/GCS.h>
#if defined(HAL_GPIO_PIN_SCHA63T_RESET)
#include <hal.h>
#endif
#define BACKEND_SAMPLE_RATE 1000
#define BACKEND_SAMPLE_RATE_MAX 4000
extern const AP_HAL::HAL& hal;
#define CONSTANTS_ONE_G (9.80665f) // m/s^2
#define int16_val(v, idx) ((int16_t)(((uint16_t)v[2*idx] << 8) | v[2*idx+1]))
#define SCHA63T_UNO 0
#define SCHA63T_DUE 1
static constexpr int16_t combine(uint8_t msb, uint8_t lsb)
{
return (msb << 8u) | lsb;
}
AP_InertialSensor_SCHA63T::AP_InertialSensor_SCHA63T(AP_InertialSensor &imu,
AP_HAL::OwnPtr<AP_HAL::Device> _dev_uno,
AP_HAL::OwnPtr<AP_HAL::Device> _dev_due,
enum Rotation _rotation)
: AP_InertialSensor_Backend(imu)
, dev_uno(std::move(_dev_uno))
, dev_due(std::move(_dev_due))
, rotation(_rotation)
{
}
AP_InertialSensor_Backend *
AP_InertialSensor_SCHA63T::probe(AP_InertialSensor &imu,
AP_HAL::OwnPtr<AP_HAL::SPIDevice> dev_uno,
AP_HAL::OwnPtr<AP_HAL::SPIDevice> dev_due,
enum Rotation rotation)
{
if (!dev_uno || !dev_due) {
return nullptr;
}
auto sensor = new AP_InertialSensor_SCHA63T(imu, std::move(dev_uno), std::move(dev_due), rotation);
if (!sensor) {
return nullptr;
}
#if defined(HAL_GPIO_PIN_SCHA63T_RESET)
palSetLine(HAL_GPIO_PIN_SCHA63T_RESET);
#endif
if (!sensor->init()) {
delete sensor;
return nullptr;
}
return sensor;
}
void AP_InertialSensor_SCHA63T::start()
{
if (!_imu.register_accel(accel_instance, BACKEND_SAMPLE_RATE, dev_uno->get_bus_id_devtype(DEVTYPE_INS_SCHA63T)) ||
!_imu.register_gyro(gyro_instance, BACKEND_SAMPLE_RATE, dev_due->get_bus_id_devtype(DEVTYPE_INS_SCHA63T))) {
return;
}
// set backend rate
uint16_t backend_rate_hz = BACKEND_SAMPLE_RATE;
if (enable_fast_sampling(accel_instance) && get_fast_sampling_rate() > 1) {
bool fast_sampling = dev_uno->bus_type() == AP_HAL::Device::BUS_TYPE_SPI;
if (fast_sampling) {
// constrain the gyro rate to be a 2^N multiple
uint8_t fast_sampling_rate = constrain_int16(get_fast_sampling_rate(), 1, 4);
// calculate rate we will be giving samples to the backend
backend_rate_hz = constrain_int16(backend_rate_hz * fast_sampling_rate, backend_rate_hz, BACKEND_SAMPLE_RATE_MAX);
}
}
uint32_t backend_period_us = 1000000UL / backend_rate_hz;
// setup sensor rotations from probe()
set_gyro_orientation(gyro_instance, rotation);
set_accel_orientation(accel_instance, rotation);
// setup callbacks
dev_uno->register_periodic_callback(backend_period_us, FUNCTOR_BIND_MEMBER(&AP_InertialSensor_SCHA63T::read_accel, void));
dev_due->register_periodic_callback(backend_period_us, FUNCTOR_BIND_MEMBER(&AP_InertialSensor_SCHA63T::read_gyro, void));
}
/*
probe and initialise accelerometer
*/
bool AP_InertialSensor_SCHA63T::init()
{
WITH_SEMAPHORE(dev_uno->get_semaphore());
WITH_SEMAPHORE(dev_due->get_semaphore());
// error initialise is OK
ret_scha63t = true;
// wait 25ms for non-volatile memory (NVM) read
hal.scheduler->delay(25);
// set DUE operation mode on (must be less than 1ms)
ret_scha63t &= RegisterWrite(SCHA63T_DUE, MODE, MODE_NORM);
ret_scha63t &= RegisterWrite(SCHA63T_DUE, MODE, MODE_NORM);
// set UNO operation mode on
ret_scha63t &= RegisterWrite(SCHA63T_UNO, MODE, MODE_NORM);
// wait 70ms initial startup
hal.scheduler->delay(70);
// set UNO configuration (data filter, flag filter)
ret_scha63t &= RegisterWrite(SCHA63T_UNO, G_FILT_DYN, G_FILT);
ret_scha63t &= RegisterWrite(SCHA63T_UNO, A_FILT_DYN, A_FILT);
// reset DUE write (0001h) to register 18h
ret_scha63t &= RegisterWrite(SCHA63T_DUE, RESCTRL, HW_RES);
// wait 25ms for non-volatile memory (NVM) read
hal.scheduler->delay(25);
// set DUE operation mode on (must be less than 1ms)
ret_scha63t &= RegisterWrite(SCHA63T_DUE, MODE, MODE_NORM);
ret_scha63t &= RegisterWrite(SCHA63T_DUE, MODE, MODE_NORM);
// wait 1ms (50ms has already passed)
hal.scheduler->delay(1);
// set DUE configuration (data filter, flag filter)
ret_scha63t &= RegisterWrite(SCHA63T_DUE, G_FILT_DYN, G_FILT);
// startup clear (startup_attempt = 0)
if (!check_startup()) {
// system in FAILURE mode (startup_attempt not equl 0 startup_attempt = 1)
// reset UNO write (0001h) to register 18h
ret_scha63t &= RegisterWrite(SCHA63T_UNO, RESCTRL, HW_RES);
// reset DUE write (0001h) to register 18h
ret_scha63t &= RegisterWrite(SCHA63T_DUE, RESCTRL, HW_RES);
// wait 25ms for non-volatile memory (NVM) read
hal.scheduler->delay(25);
// set DUE operation mode on (must be less than 1ms)
ret_scha63t &= RegisterWrite(SCHA63T_DUE, MODE, MODE_NORM);
ret_scha63t &= RegisterWrite(SCHA63T_DUE, MODE, MODE_NORM);
// set UNO operation mode on
ret_scha63t &= RegisterWrite(SCHA63T_UNO, MODE, MODE_NORM);
// wait 70ms initial startup
hal.scheduler->delay(50);
// set UNO configuration (data filter, flag filter)
ret_scha63t &= RegisterWrite(SCHA63T_UNO, G_FILT_DYN, G_FILT);
ret_scha63t &= RegisterWrite(SCHA63T_UNO, A_FILT_DYN, A_FILT);
// set DUE configuration (data filter, flag filter)
ret_scha63t &= RegisterWrite(SCHA63T_DUE, G_FILT_DYN, G_FILT);
// wait 45ms (adjust restart duration to 500ms)
hal.scheduler->delay(45);
if (!check_startup()) {
return false; // check FAILED
}
}
// check ok
return true;
}
bool AP_InertialSensor_SCHA63T::check_startup()
{
uint8_t val[4];
bool read_summary_error = false;
// wait 405ms (300Hz filter)
hal.scheduler->delay(405);
// start EOI = 1
ret_scha63t &= RegisterWrite(SCHA63T_UNO, RESCTRL, RES_EOI);
ret_scha63t &= RegisterWrite(SCHA63T_DUE, RESCTRL, RES_EOI);
// first read summary status
ret_scha63t &= RegisterRead(SCHA63T_UNO, S_SUM, val);
ret_scha63t &= RegisterRead(SCHA63T_DUE, S_SUM, val);
// 2.5ms or more
hal.scheduler->delay(3);
// second read summary status
ret_scha63t &= RegisterRead(SCHA63T_UNO, S_SUM, val);
ret_scha63t &= RegisterRead(SCHA63T_DUE, S_SUM, val);
// 2.5ms or more
hal.scheduler->delay(3);
// read summary status
ret_scha63t &= RegisterRead(SCHA63T_UNO, S_SUM, val);
// check UNO summary status
if (!((val[1] & 0x9e) && (val[2] & 0xda))) {
read_summary_error = true;
}
ret_scha63t &= RegisterRead(SCHA63T_DUE, S_SUM, val);
// check DUE summary status
if (!((val[1] & 0xf8) && (val[2] & 0x03))) {
read_summary_error = true;
}
// check error
if (read_summary_error) {
return false;
}
return true;
}
/*
read accel fifo
*/
void AP_InertialSensor_SCHA63T::read_accel(void)
{
uint8_t rsp_accl_x[4];
uint8_t rsp_accl_y[4];
uint8_t rsp_accl_z[4];
uint8_t rsp_temper[4];
int16_t accel_x = 0;
int16_t accel_y = 0;
int16_t accel_z = 0;
int16_t uno_temp = 0;
// ACCL_X Cmd Send (first response is undefined data)
ret_scha63t &= RegisterRead(SCHA63T_UNO, ACC_X, rsp_accl_x);
// ACCL_Y Cmd Send + ACCL_X Response Receive
ret_scha63t &= RegisterRead(SCHA63T_UNO, ACC_Y, rsp_accl_x);
// ACCL_Z Cmd Send + ACCL_Y Response Receive
ret_scha63t &= RegisterRead(SCHA63T_UNO, ACC_Z, rsp_accl_y);
// TEMPER Cmd Send + RATE_X Response Receive
ret_scha63t &= RegisterRead(SCHA63T_UNO, TEMP, rsp_accl_z);
// TEMPER Cmd Send + TEMPRE Response Receive
ret_scha63t &= RegisterRead(SCHA63T_UNO, TEMP, rsp_temper);
// response data address check
if (((rsp_accl_x[0] & 0x7C) >> 2) == ACC_X) {
accel_x = combine(rsp_accl_x[1], rsp_accl_x[2]);
} else {
ret_scha63t &= false;
}
if (((rsp_accl_y[0] & 0x7C) >> 2) == ACC_Y) {
accel_y = combine(rsp_accl_y[1], rsp_accl_y[2]);
} else {
ret_scha63t &= false;
}
if (((rsp_accl_z[0] & 0x7C) >> 2) == ACC_Z) {
accel_z = combine(rsp_accl_z[1], rsp_accl_z[2]);
} else {
ret_scha63t &= false;
}
if (((rsp_temper[0] & 0x7C) >> 2) == TEMP) {
uno_temp = combine(rsp_temper[1], rsp_temper[2]);
} else {
ret_scha63t &= false;
}
set_temperature(accel_instance, uno_temp);
// change coordinate system from left hand too right hand
accel_z = (accel_z == INT16_MIN) ? INT16_MAX : -accel_z;
Vector3f accel(accel_x, accel_y, accel_z);
accel *= (CONSTANTS_ONE_G / 4905.f); // 4905 LSB/g, 0.204mg/LSB
_rotate_and_correct_accel(accel_instance, accel);
_notify_new_accel_raw_sample(accel_instance, accel);
AP_HAL::Device::checkreg reg;
if (!dev_uno->check_next_register(reg)) {
log_register_change(dev_uno->get_bus_id(), reg);
_inc_accel_error_count(accel_instance);
}
}
/*
read gyro fifo
*/
void AP_InertialSensor_SCHA63T::read_gyro(void)
{
uint8_t rsp_rate_x[4];
uint8_t rsp_rate_y[4];
uint8_t rsp_rate_z[4];
uint8_t rsp_uno_temper[4];
uint8_t rsp_due_temper[4];
int16_t gyro_x = 0;
int16_t gyro_y = 0;
int16_t gyro_z = 0;
int16_t uno_temp = 0;
int16_t due_temp = 0;
// RATE_Y Cmd Send (first response is undefined data)
ret_scha63t &= RegisterRead(SCHA63T_DUE, RATE_Y, rsp_rate_y);
// RATE_Z Cmd Send + RATE_Y Response Receive
ret_scha63t &= RegisterRead(SCHA63T_DUE, RATE_XZ, rsp_rate_y);
// TEMPER Cmd Send + RATE_Z Response Receive
ret_scha63t &= RegisterRead(SCHA63T_DUE, TEMP, rsp_rate_z);
// TEMPER Cmd Send + TEMPRE Response Receive
ret_scha63t &= RegisterRead(SCHA63T_DUE, TEMP, rsp_due_temper);
// RATE_X Cmd Send + ACCL_Z Response Receive
ret_scha63t &= RegisterRead(SCHA63T_UNO, RATE_XZ, rsp_rate_x);
// TEMPER Cmd Send + TEMPRE Response Receive
ret_scha63t &= RegisterRead(SCHA63T_UNO, TEMP, rsp_rate_x);
// TEMPER Cmd Send + TEMPRE Response Receive
ret_scha63t &= RegisterRead(SCHA63T_UNO, TEMP, rsp_uno_temper);
// response data address check
if (((rsp_rate_x[0] & 0x7C) >> 2) == RATE_XZ) {
gyro_x = combine(rsp_rate_x[1], rsp_rate_x[2]);
} else {
ret_scha63t &= false;
}
if (((rsp_rate_y[0] & 0x7C) >> 2) == RATE_Y) {
gyro_y = combine(rsp_rate_y[1], rsp_rate_y[2]);
} else {
ret_scha63t &= false;
}
if (((rsp_rate_z[0] & 0x7C) >> 2) == RATE_XZ) {
gyro_z = combine(rsp_rate_z[1], rsp_rate_z[2]);
} else {
ret_scha63t &= false;
}
if (((rsp_uno_temper[0] & 0x7C) >> 2) == TEMP) {
uno_temp = combine(rsp_uno_temper[1], rsp_uno_temper[2]);
} else {
ret_scha63t &= false;
}
if (((rsp_due_temper[0] & 0x7C) >> 2) == TEMP) {
due_temp = combine(rsp_due_temper[1], rsp_due_temper[2]);
} else {
ret_scha63t &= false;
}
set_temperature(gyro_instance, (uno_temp + due_temp) / 2);
// change coordinate system from left hand too right hand
gyro_z = (gyro_z == INT16_MIN) ? INT16_MAX : -gyro_z;
Vector3f gyro(gyro_x, gyro_y, gyro_z);
gyro *= radians(1.f / 80.f);
_rotate_and_correct_gyro(gyro_instance, gyro);
_notify_new_gyro_raw_sample(gyro_instance, gyro);
AP_HAL::Device::checkreg reg;
if (!dev_due->check_next_register(reg)) {
log_register_change(dev_due->get_bus_id(), reg);
_inc_gyro_error_count(gyro_instance);
}
}
void AP_InertialSensor_SCHA63T::set_temperature(uint8_t instance, uint16_t temper)
{
float temperature = 25.0f + ( temper / 30 );
float temp_degc = (0.5f * temperature) + 23.0f;
_publish_temperature(instance, temp_degc);
}
bool AP_InertialSensor_SCHA63T::update()
{
update_accel(accel_instance);
update_gyro(gyro_instance);
return true;
}
bool AP_InertialSensor_SCHA63T::RegisterRead(int uno_due, reg_scha63t reg_addr, uint8_t* val)
{
bool ret = false;
uint8_t cmd[4];
uint8_t bCrc;
cmd[1] = cmd[2] = 0;
cmd[0] = reg_addr << 2;
cmd[0] &= 0x7f;
cmd[3] = crc8_sae(cmd, 3);
uint8_t buf[4];
switch ( uno_due ) {
case SCHA63T_UNO:
memcpy(buf, cmd, 4);
ret = dev_uno->transfer(buf, 4, buf, 4);
memcpy(val, buf, 4);
break;
case SCHA63T_DUE:
memcpy(buf, cmd, 4);
ret = dev_due->transfer(buf, 4, buf, 4);
memcpy(val, buf, 4);
break;
default:
break;
}
if (ret == true) {
bCrc = crc8_sae(val, 3);
if ( bCrc != val[3] ) {
ret = false;
}
}
// true:OK. false:FAILED
return ret;
}
bool AP_InertialSensor_SCHA63T::RegisterWrite(int uno_due, reg_scha63t reg_addr, uint16_t val)
{
bool ret = false;
uint8_t res[4];
uint8_t cmd[4];
cmd[0] = reg_addr << 2;
cmd[0] |= 0x80;
cmd[1] = (val >> 8);
cmd[2] = val;
cmd[3] = crc8_sae(cmd, 3);
uint8_t buf[4];
switch ( uno_due ) {
case SCHA63T_UNO:
memcpy(buf, cmd, 4);
ret = dev_uno->transfer(buf, 4, buf, 4);
memcpy(res, buf, 4);
break;
case SCHA63T_DUE:
memcpy(buf, cmd, 4);
ret = dev_due->transfer(buf, 4, buf, 4);
memcpy(res, buf, 4);
break;
default:
break;
}
// true:OK. false:FAILED
return ret;
}