mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-24 17:48:35 -04:00
e2ef0bd36e
new dsp peak detection algorithm add DSP sketch with frequency ascii art tool to generate gyro data frames from batch sampled DF logs add generated data from real Y6B flight allow fft_start() to use ObjectBuffer<float> for lock-free access allow ObjectBuffer to be resized
110 lines
4.7 KiB
C++
110 lines
4.7 KiB
C++
/*
|
|
* This file is free software: you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This file is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
* See the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Code by Andy Piper
|
|
*/
|
|
/*
|
|
interface to DSP device
|
|
*/
|
|
#pragma once
|
|
|
|
#include <stdint.h>
|
|
#include "AP_HAL_Namespace.h"
|
|
#include <AP_HAL/utility/RingBuffer.h>
|
|
|
|
#define DSP_MEM_REGION AP_HAL::Util::MEM_FAST
|
|
// Maximum tolerated number of cycles with missing signal
|
|
#define FFT_MAX_MISSED_UPDATES 5
|
|
|
|
class AP_HAL::DSP {
|
|
#if HAL_WITH_DSP
|
|
public:
|
|
enum FrequencyPeak {
|
|
CENTER = 0,
|
|
LOWER_SHOULDER = 1,
|
|
UPPER_SHOULDER = 2,
|
|
MAX_TRACKED_PEAKS = 3,
|
|
NONE = 4
|
|
};
|
|
|
|
struct FrequencyPeakData {
|
|
// estimate of FFT peak frequency
|
|
float _freq_hz;
|
|
// FFT bin with maximum energy
|
|
uint16_t _bin;
|
|
// width of the peak
|
|
float _noise_width_hz;
|
|
};
|
|
|
|
class FFTWindowState {
|
|
public:
|
|
// frequency width of a FFT bin
|
|
const float _bin_resolution;
|
|
// number of FFT bins
|
|
const uint16_t _bin_count;
|
|
// size of the FFT window
|
|
const uint16_t _window_size;
|
|
// number of harmonics of interest
|
|
const uint8_t _harmonics;
|
|
// FFT data
|
|
float* _freq_bins;
|
|
// derivative real data scratch space
|
|
float* _derivative_freq_bins;
|
|
// intermediate real FFT data
|
|
float* _rfft_data;
|
|
// three highest peaks
|
|
FrequencyPeakData _peak_data[MAX_TRACKED_PEAKS];
|
|
// Hanning window for incoming samples, see https://en.wikipedia.org/wiki/Window_function#Hann_.28Hanning.29_window
|
|
float* _hanning_window;
|
|
// Use in calculating the PS of the signal [Heinz] equations (20) & (21)
|
|
float _window_scale;
|
|
|
|
virtual ~FFTWindowState();
|
|
FFTWindowState(uint16_t window_size, uint16_t sample_rate, uint8_t harmonics);
|
|
};
|
|
// initialise an FFT instance
|
|
virtual FFTWindowState* fft_init(uint16_t window_size, uint16_t sample_rate, uint8_t harmonics) = 0;
|
|
// start an FFT analysis with an ObjectBuffer
|
|
virtual void fft_start(FFTWindowState* state, FloatBuffer& samples, uint16_t advance) = 0;
|
|
// perform remaining steps of an FFT analysis
|
|
virtual uint16_t fft_analyse(FFTWindowState* state, uint16_t start_bin, uint16_t end_bin, float noise_att_cutoff) = 0;
|
|
|
|
protected:
|
|
// step 3: find the magnitudes of the complex data
|
|
void step_cmplx_mag(FFTWindowState* fft, uint16_t start_bin, uint16_t end_bin, float noise_att_cutoff);
|
|
// calculate the noise width of a peak based on the input parameters
|
|
float find_noise_width(FFTWindowState* fft, uint16_t start_bin, uint16_t end_bin, uint16_t max_energy_bin, float cutoff, uint16_t& peak_top, uint16_t& peak_bottom) const;
|
|
// step 4: find the bin with the highest energy and interpolate the required frequency
|
|
uint16_t step_calc_frequencies(FFTWindowState* fft, uint16_t start_bin, uint16_t end_bin);
|
|
// calculate a single frequency
|
|
uint16_t calc_frequency(FFTWindowState* fft, uint16_t start_bin, uint16_t peak_bin, uint16_t end_bin);
|
|
// find the maximum value in an vector of floats
|
|
virtual void vector_max_float(const float* vin, uint16_t len, float* max_value, uint16_t* max_index) const = 0;
|
|
// find the mean value in an vector of floats
|
|
virtual float vector_mean_float(const float* vin, uint16_t len) const = 0;
|
|
// multiple an vector of floats by a scale factor
|
|
virtual void vector_scale_float(const float* vin, float scale, float* vout, uint16_t len) const = 0;
|
|
// algorithm for finding peaks in noisy data as per https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm
|
|
uint16_t find_peaks(const float* input, uint16_t length, float* output, uint16_t* peaks, uint16_t peaklen,
|
|
float slopeThreshold, float ampThreshold, uint16_t smoothwidth, uint16_t peakgroup) const;
|
|
uint16_t val2index(const float* vector, uint16_t n, float val) const;
|
|
void derivative(const float* input, float* output, uint16_t n) const;
|
|
void fastsmooth(float* input, uint16_t n, uint16_t smoothwidth) const;
|
|
|
|
// quinn's frequency interpolator
|
|
float calculate_quinns_second_estimator(const FFTWindowState* fft, const float* complex_fft, uint16_t k) const;
|
|
float tau(const float x) const;
|
|
#endif // HAL_WITH_DSP
|
|
};
|