ardupilot/APMrover2/radio.cpp
Caio Marcelo de Oliveira Filho ee073787c8 Rover: use millis/micros/panic functions
Instead of going through 'hal' then 'scheduler', use directly the AP_HAL
functions. Besides removing indirection that is not necessary for such
functions, this patch ends up reducing the code size in the call sites.

For example, building ArduCopter for PX4 with this change (compared to
before introduction of the functions) yields almost 3k bytes of code
size.

    # ArduCopter build before the functions (1b29a1af46)
       text	   data	    bss	    dec	    hex	filename
     895264	   2812	  62732	 960808	  ea928	/.../px4fmu-v2_APM.build/firmware.elf

    # ArduCopter build after this patch
       text	   data	    bss	    dec	    hex	filename
     892264	   2812	  62732	 957808	  e9d70	/.../px4fmu-v2_APM.build/firmware.elf

A later patch will remove the unused functions in the Schedulers.
2015-11-20 12:26:14 +09:00

238 lines
6.9 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include "Rover.h"
/*
allow for runtime change of control channel ordering
*/
void Rover::set_control_channels(void)
{
channel_steer = RC_Channel::rc_channel(rcmap.roll()-1);
channel_throttle = RC_Channel::rc_channel(rcmap.throttle()-1);
channel_learn = RC_Channel::rc_channel(g.learn_channel-1);
// set rc channel ranges
channel_steer->set_angle(SERVO_MAX);
channel_throttle->set_angle(100);
// For a rover safety is TRIM throttle
if (!arming.is_armed() && arming.arming_required() == AP_Arming::YES_MIN_PWM) {
hal.rcout->set_safety_pwm(1UL<<(rcmap.throttle()-1), channel_throttle->radio_trim);
}
// setup correct scaling for ESCs like the UAVCAN PX4ESC which
// take a proportion of speed.
hal.rcout->set_esc_scaling(channel_throttle->radio_min, channel_throttle->radio_max);
}
void Rover::init_rc_in()
{
// set rc dead zones
channel_steer->set_default_dead_zone(30);
channel_throttle->set_default_dead_zone(30);
//set auxiliary ranges
update_aux();
}
void Rover::init_rc_out()
{
RC_Channel::rc_channel(CH_1)->enable_out();
RC_Channel::rc_channel(CH_3)->enable_out();
if (arming.arming_required() != AP_Arming::YES_ZERO_PWM) {
channel_throttle->enable_out();
}
RC_Channel::output_trim_all();
// setup PWM values to send if the FMU firmware dies
RC_Channel::setup_failsafe_trim_all();
// output throttle trim when safety off if arming
// is setup for min on disarm. MIN is from plane where MIN is effectively no throttle.
// For Rover's no throttle means TRIM as rovers can go backwards i.e. MIN throttle is
// full speed backward.
if (arming.arming_required() == AP_Arming::YES_MIN_PWM) {
hal.rcout->set_safety_pwm(1UL<<(rcmap.throttle()-1), channel_throttle->radio_trim);
}
}
/*
check for driver input on rudder/steering stick for arming/disarming
*/
void Rover::rudder_arm_disarm_check()
{
// In Rover we need to check that its set to the throttle trim and within the DZ
// if throttle is not within trim dz, then pilot cannot rudder arm/disarm
if (!channel_throttle->in_trim_dz()) {
rudder_arm_timer = 0;
return;
}
// if not in a manual throttle mode then disallow rudder arming/disarming
if (auto_throttle_mode) {
rudder_arm_timer = 0;
return;
}
if (!arming.is_armed()) {
// when not armed, full right rudder starts arming counter
if (channel_steer->control_in > 4000) {
uint32_t now = millis();
if (rudder_arm_timer == 0 ||
now - rudder_arm_timer < 3000) {
if (rudder_arm_timer == 0) {
rudder_arm_timer = now;
}
} else {
//time to arm!
arm_motors(AP_Arming::RUDDER);
rudder_arm_timer = 0;
}
} else {
// not at full right rudder
rudder_arm_timer = 0;
}
} else if (!motor_active()) {
// when armed and motor not active (not moving), full left rudder starts disarming counter
if (channel_steer->control_in < -4000) {
uint32_t now = millis();
if (rudder_arm_timer == 0 ||
now - rudder_arm_timer < 3000) {
if (rudder_arm_timer == 0) {
rudder_arm_timer = now;
}
} else {
//time to disarm!
disarm_motors();
rudder_arm_timer = 0;
}
} else {
// not at full left rudder
rudder_arm_timer = 0;
}
}
}
void Rover::read_radio()
{
if (!hal.rcin->new_input()) {
control_failsafe(channel_throttle->radio_in);
return;
}
failsafe.last_valid_rc_ms = AP_HAL::millis();
RC_Channel::set_pwm_all();
control_failsafe(channel_throttle->radio_in);
channel_throttle->servo_out = channel_throttle->control_in;
// Check if the throttle value is above 50% and we need to nudge
// Make sure its above 50% in the direction we are travelling
if ((abs(channel_throttle->servo_out) > 50) &&
(((channel_throttle->servo_out < 0) && in_reverse) ||
((channel_throttle->servo_out > 0) && !in_reverse))) {
throttle_nudge = (g.throttle_max - g.throttle_cruise) *
((fabsf(channel_throttle->norm_input())-0.5f) / 0.5f);
} else {
throttle_nudge = 0;
}
if (g.skid_steer_in) {
// convert the two radio_in values from skid steering values
/*
mixing rule:
steering = motor1 - motor2
throttle = 0.5*(motor1 + motor2)
motor1 = throttle + 0.5*steering
motor2 = throttle - 0.5*steering
*/
float motor1 = channel_steer->norm_input();
float motor2 = channel_throttle->norm_input();
float steering_scaled = motor1 - motor2;
float throttle_scaled = 0.5f*(motor1 + motor2);
int16_t steer = channel_steer->radio_trim;
int16_t thr = channel_throttle->radio_trim;
if (steering_scaled > 0.0f) {
steer += steering_scaled*(channel_steer->radio_max-channel_steer->radio_trim);
} else {
steer += steering_scaled*(channel_steer->radio_trim-channel_steer->radio_min);
}
if (throttle_scaled > 0.0f) {
thr += throttle_scaled*(channel_throttle->radio_max-channel_throttle->radio_trim);
} else {
thr += throttle_scaled*(channel_throttle->radio_trim-channel_throttle->radio_min);
}
channel_steer->set_pwm(steer);
channel_throttle->set_pwm(thr);
}
rudder_arm_disarm_check();
}
void Rover::control_failsafe(uint16_t pwm)
{
if (!g.fs_throttle_enabled) {
// no throttle failsafe
return;
}
// Check for failsafe condition based on loss of GCS control
if (rc_override_active) {
failsafe_trigger(FAILSAFE_EVENT_RC, (millis() - failsafe.rc_override_timer) > 1500);
} else if (g.fs_throttle_enabled) {
bool failed = pwm < (uint16_t)g.fs_throttle_value;
if (AP_HAL::millis() - failsafe.last_valid_rc_ms > 2000) {
failed = true;
}
failsafe_trigger(FAILSAFE_EVENT_THROTTLE, failed);
}
}
/*
return true if throttle level is below throttle failsafe threshold
or RC input is invalid
*/
bool Rover::throttle_failsafe_active(void)
{
if (!g.fs_throttle_enabled) {
return false;
}
if (millis() - failsafe.last_valid_rc_ms > 1000) {
// we haven't had a valid RC frame for 1 seconds
return true;
}
if (channel_throttle->get_reverse()) {
return channel_throttle->radio_in >= g.fs_throttle_value;
}
return channel_throttle->radio_in <= g.fs_throttle_value;
}
void Rover::trim_control_surfaces()
{
read_radio();
// Store control surface trim values
// ---------------------------------
if (channel_steer->radio_in > 1400) {
channel_steer->radio_trim = channel_steer->radio_in;
// save to eeprom
channel_steer->save_eeprom();
}
}
void Rover::trim_radio()
{
for (int y = 0; y < 30; y++) {
read_radio();
}
trim_control_surfaces();
}