mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-24 17:48:35 -04:00
e3ab1b0353
Also made the get_health accessor an inline function.
397 lines
13 KiB
C++
397 lines
13 KiB
C++
/*
|
|
APM_DCM_FW.cpp - DCM AHRS Library, fixed wing version, for Ardupilot Mega
|
|
Code by Doug Weibel, Jordi Muñoz and Jose Julio. DIYDrones.com
|
|
|
|
This library works with the ArduPilot Mega and "Oilpan"
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
Methods:
|
|
update_DCM() : Updates the AHRS by integrating the rotation matrix over time using the IMU object data
|
|
get_gyro() : Returns gyro vector corrected for bias
|
|
get_accel() : Returns accelerometer vector
|
|
get_dcm_matrix() : Returns dcm matrix
|
|
|
|
*/
|
|
#include <AP_DCM.h>
|
|
|
|
#define OUTPUTMODE 1 // This is just used for debugging, remove later
|
|
#define ToRad(x) (x*0.01745329252) // *pi/180
|
|
#define ToDeg(x) (x*57.2957795131) // *180/pi
|
|
|
|
//#define Kp_ROLLPITCH 0.05967 // .0014 * 418/9.81 Pitch&Roll Drift Correction Proportional Gain
|
|
//#define Ki_ROLLPITCH 0.00001278 // 0.0000003 * 418/9.81 Pitch&Roll Drift Correction Integrator Gain
|
|
//#define Ki_ROLLPITCH 0.0 // 0.0000003 * 418/9.81 Pitch&Roll Drift Correction Integrator Gain
|
|
|
|
//#define Kp_YAW 0.8 // Yaw Drift Correction Porportional Gain
|
|
//#define Ki_YAW 0.00004 // Yaw Drift CorrectionIntegrator Gain
|
|
|
|
#define SPEEDFILT 300 // centimeters/second
|
|
#define ADC_CONSTRAINT 900
|
|
|
|
|
|
void
|
|
AP_DCM::set_compass(Compass *compass)
|
|
{
|
|
_compass = compass;
|
|
}
|
|
|
|
/**************************************************/
|
|
void
|
|
AP_DCM::update_DCM_fast(void)
|
|
{
|
|
float delta_t;
|
|
|
|
_imu->update();
|
|
_gyro_vector = _imu->get_gyro(); // Get current values for IMU sensors
|
|
_accel_vector = _imu->get_accel(); // Get current values for IMU sensors
|
|
|
|
delta_t = _imu->get_delta_time();
|
|
|
|
matrix_update(delta_t); // Integrate the DCM matrix
|
|
|
|
switch(_toggle++){
|
|
case 0:
|
|
normalize(); // Normalize the DCM matrix
|
|
break;
|
|
|
|
case 1:
|
|
//drift_correction(); // Normalize the DCM matrix
|
|
euler_rp(); // Calculate pitch, roll, yaw for stabilization and navigation
|
|
break;
|
|
|
|
case 2:
|
|
drift_correction(); // Normalize the DCM matrix
|
|
break;
|
|
|
|
case 3:
|
|
//drift_correction(); // Normalize the DCM matrix
|
|
euler_rp(); // Calculate pitch, roll, yaw for stabilization and navigation
|
|
break;
|
|
|
|
case 4:
|
|
euler_yaw();
|
|
break;
|
|
|
|
default:
|
|
euler_rp(); // Calculate pitch, roll, yaw for stabilization and navigation
|
|
_toggle = 0;
|
|
//drift_correction(); // Normalize the DCM matrix
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**************************************************/
|
|
void
|
|
AP_DCM::update_DCM(void)
|
|
{
|
|
float delta_t;
|
|
|
|
_imu->update();
|
|
_gyro_vector = _imu->get_gyro(); // Get current values for IMU sensors
|
|
_accel_vector = _imu->get_accel(); // Get current values for IMU sensors
|
|
|
|
delta_t = _imu->get_delta_time();
|
|
|
|
matrix_update(delta_t); // Integrate the DCM matrix
|
|
normalize(); // Normalize the DCM matrix
|
|
drift_correction(); // Perform drift correction
|
|
euler_angles(); // Calculate pitch, roll, yaw for stabilization and navigation
|
|
}
|
|
|
|
/**************************************************/
|
|
|
|
//For Debugging
|
|
/*
|
|
void
|
|
printm(const char *l, Matrix3f &m)
|
|
{ Serial.println(" "); Serial.println(l);
|
|
Serial.print(m.a.x, 12); Serial.print(" "); Serial.print(m.a.y, 12); Serial.print(" "); Serial.println(m.a.z, 12);
|
|
Serial.print(m.b.x, 12); Serial.print(" "); Serial.print(m.b.y, 12); Serial.print(" "); Serial.println(m.b.z, 12);
|
|
Serial.print(m.c.x, 12); Serial.print(" "); Serial.print(m.c.y, 12); Serial.print(" "); Serial.println(m.c.z, 12);
|
|
Serial.print(*(uint32_t *)&(m.a.x), HEX); Serial.print(" "); Serial.print(*(uint32_t *)&(m.a.y), HEX); Serial.print(" "); Serial.println(*(uint32_t *)&(m.a.z), HEX);
|
|
Serial.print(*(uint32_t *)&(m.b.x), HEX); Serial.print(" "); Serial.print(*(uint32_t *)&(m.b.y), HEX); Serial.print(" "); Serial.println(*(uint32_t *)&(m.b.z), HEX);
|
|
Serial.print(*(uint32_t *)&(m.c.x), HEX); Serial.print(" "); Serial.print(*(uint32_t *)&(m.c.y), HEX); Serial.print(" "); Serial.println(*(uint32_t *)&(m.c.z), HEX);
|
|
}
|
|
*/
|
|
|
|
/**************************************************/
|
|
void
|
|
AP_DCM::matrix_update(float _G_Dt)
|
|
{
|
|
Matrix3f update_matrix;
|
|
Matrix3f temp_matrix;
|
|
|
|
_omega_integ_corr = _gyro_vector + _omega_I; // Used for _centripetal correction (theoretically better than _omega)
|
|
_omega = _omega_integ_corr + _omega_P; // Equation 16, adding proportional and integral correction terms
|
|
|
|
if(_centripetal){
|
|
accel_adjust(); // Remove _centripetal acceleration.
|
|
}
|
|
|
|
#if OUTPUTMODE == 1
|
|
float tmp = _G_Dt * _omega.x;
|
|
update_matrix.b.z = -tmp; // -delta Theta x
|
|
update_matrix.c.y = tmp; // delta Theta x
|
|
|
|
tmp = _G_Dt * _omega.y;
|
|
update_matrix.c.x = -tmp; // -delta Theta y
|
|
update_matrix.a.z = tmp; // delta Theta y
|
|
|
|
tmp = _G_Dt * _omega.z;
|
|
update_matrix.b.x = tmp; // delta Theta z
|
|
update_matrix.a.y = -tmp; // -delta Theta z
|
|
|
|
update_matrix.a.x = 0;
|
|
update_matrix.b.y = 0;
|
|
update_matrix.c.z = 0;
|
|
#else // Uncorrected data (no drift correction)
|
|
update_matrix.a.x = 0;
|
|
update_matrix.a.y = -_G_Dt * _gyro_vector.z;
|
|
update_matrix.a.z = _G_Dt * _gyro_vector.y;
|
|
update_matrix.b.x = _G_Dt * _gyro_vector.z;
|
|
update_matrix.b.y = 0;
|
|
update_matrix.b.z = -_G_Dt * _gyro_vector.x;
|
|
update_matrix.c.x = -_G_Dt * _gyro_vector.y;
|
|
update_matrix.c.y = _G_Dt * _gyro_vector.x;
|
|
update_matrix.c.z = 0;
|
|
#endif
|
|
|
|
temp_matrix = _dcm_matrix * update_matrix;
|
|
_dcm_matrix = _dcm_matrix + temp_matrix; // Equation 17
|
|
}
|
|
|
|
|
|
/**************************************************/
|
|
void
|
|
AP_DCM::accel_adjust(void)
|
|
{
|
|
Vector3f veloc, temp;
|
|
veloc.x = _gps->ground_speed / 100; // We are working with acceleration in m/s^2 units
|
|
|
|
// We are working with a modified version of equation 26 as our IMU object reports acceleration in the positive axis direction as positive
|
|
|
|
//_accel_vector -= _omega_integ_corr % _veloc; // Equation 26 This line is giving the compiler a problem so we break it up below
|
|
temp.x = 0;
|
|
temp.y = _omega_integ_corr.z * veloc.x; // only computing the non-zero terms
|
|
temp.z = -1.0f * _omega_integ_corr.y * veloc.x; // After looking at the compiler issue lets remove _veloc and simlify
|
|
|
|
_accel_vector -= temp;
|
|
}
|
|
|
|
|
|
/*************************************************
|
|
Direction Cosine Matrix IMU: Theory
|
|
William Premerlani and Paul Bizard
|
|
|
|
Numerical errors will gradually reduce the orthogonality conditions expressed by equation 5
|
|
to approximations rather than identities. In effect, the axes in the two frames of reference no
|
|
longer describe a rigid body. Fortunately, numerical error accumulates very slowly, so it is a
|
|
simple matter to stay ahead of it.
|
|
We call the process of enforcing the orthogonality conditions ÒrenormalizationÓ.
|
|
*/
|
|
void
|
|
AP_DCM::normalize(void)
|
|
{
|
|
float error = 0;
|
|
Vector3f temporary[3];
|
|
|
|
int problem = 0;
|
|
|
|
error = _dcm_matrix.a * _dcm_matrix.b; // eq.18
|
|
|
|
temporary[0] = _dcm_matrix.b;
|
|
temporary[1] = _dcm_matrix.a;
|
|
temporary[0] = _dcm_matrix.a - (temporary[0] * (0.5f * error)); // eq.19
|
|
temporary[1] = _dcm_matrix.b - (temporary[1] * (0.5f * error)); // eq.19
|
|
|
|
temporary[2] = temporary[0] % temporary[1]; // c= a x b // eq.20
|
|
|
|
_dcm_matrix.a = renorm(temporary[0], problem);
|
|
_dcm_matrix.b = renorm(temporary[1], problem);
|
|
_dcm_matrix.c = renorm(temporary[2], problem);
|
|
|
|
if (problem == 1) { // Our solution is blowing up and we will force back to initial condition. Hope we are not upside down!
|
|
_dcm_matrix.a.x = 1.0f;
|
|
_dcm_matrix.a.y = 0.0f;
|
|
_dcm_matrix.a.z = 0.0f;
|
|
_dcm_matrix.b.x = 0.0f;
|
|
_dcm_matrix.b.y = 1.0f;
|
|
_dcm_matrix.b.z = 0.0f;
|
|
_dcm_matrix.c.x = 0.0f;
|
|
_dcm_matrix.c.y = 0.0f;
|
|
_dcm_matrix.c.z = 1.0f;
|
|
_omega_I.x = 0.0f;
|
|
_omega_I.y = 0.0f;
|
|
_omega_I.z = 0.0f;
|
|
}
|
|
}
|
|
|
|
/**************************************************/
|
|
Vector3f
|
|
AP_DCM::renorm(Vector3f const &a, int &problem)
|
|
{
|
|
float renorm_val;
|
|
|
|
renorm_val = a * a;
|
|
|
|
if (renorm_val < 1.5625f && renorm_val > 0.64f) { // Check if we are OK to use Taylor expansion
|
|
renorm_val = 0.5 * (3 - renorm_val); // eq.21
|
|
} else if (renorm_val < 100.0f && renorm_val > 0.01f) {
|
|
renorm_val = 1.0 / sqrt(renorm_val);
|
|
renorm_sqrt_count++;
|
|
} else {
|
|
problem = 1;
|
|
renorm_blowup_count++;
|
|
}
|
|
|
|
return(a * renorm_val);
|
|
}
|
|
|
|
/**************************************************/
|
|
void
|
|
AP_DCM::drift_correction(void)
|
|
{
|
|
//Compensation the Roll, Pitch and Yaw drift.
|
|
//float mag_heading_x;
|
|
//float mag_heading_y;
|
|
float error_course;
|
|
float accel_magnitude;
|
|
float accel_weight;
|
|
float integrator_magnitude;
|
|
//static float scaled_omega_P[3];
|
|
//static float scaled_omega_I[3];
|
|
static bool in_motion = false;
|
|
Matrix3f rot_mat;
|
|
|
|
//*****Roll and Pitch***************
|
|
|
|
// Calculate the magnitude of the accelerometer vector
|
|
accel_magnitude = _accel_vector.length() / 9.80665f;
|
|
|
|
// Dynamic weighting of accelerometer info (reliability filter)
|
|
// Weight for accelerometer info (<0.5G = 0.0, 1G = 1.0 , >1.5G = 0.0)
|
|
accel_weight = constrain(1 - 3 * fabs(1 - accel_magnitude), 0, 1); // upped to (<0.66G = 0.0, 1G = 1.0 , >1.33G = 0.0)
|
|
|
|
// We monitor the amount that the accelerometer based drift correction is deweighted for performance reporting
|
|
_health = constrain(_health+(0.02 * (accel_weight - .5)), 0, 1);
|
|
|
|
// adjust the ground of reference
|
|
_error_roll_pitch = _dcm_matrix.c % _accel_vector; // Equation 27 *** sign changed from prev implementation???
|
|
|
|
// error_roll_pitch are in Accel m/s^2 units
|
|
// Limit max error_roll_pitch to limit max omega_P and omega_I
|
|
_error_roll_pitch.x = constrain(_error_roll_pitch.x, -1.17f, 1.17f);
|
|
_error_roll_pitch.y = constrain(_error_roll_pitch.y, -1.17f, 1.17f);
|
|
_error_roll_pitch.z = constrain(_error_roll_pitch.z, -1.17f, 1.17f);
|
|
|
|
_omega_P = _error_roll_pitch * (_kp_roll_pitch * accel_weight);
|
|
_omega_I += _error_roll_pitch * (_ki_roll_pitch * accel_weight);
|
|
|
|
|
|
//*****YAW***************
|
|
|
|
if (_compass) {
|
|
// We make the gyro YAW drift correction based on compass magnetic heading
|
|
error_course = (_dcm_matrix.a.x * _compass->heading_y) - (_dcm_matrix.b.x * _compass->heading_x); // Equation 23, Calculating YAW error
|
|
|
|
} else {
|
|
|
|
// Use GPS Ground course to correct yaw gyro drift
|
|
if (_gps->ground_speed >= SPEEDFILT) {
|
|
|
|
_course_over_ground_x = cos(ToRad(_gps->ground_course/100.0));
|
|
_course_over_ground_y = sin(ToRad(_gps->ground_course/100.0));
|
|
if(in_motion) {
|
|
error_course = (_dcm_matrix.a.x * _course_over_ground_y) - (_dcm_matrix.b.x * _course_over_ground_x); // Equation 23, Calculating YAW error
|
|
} else {
|
|
float cos_psi_err, sin_psi_err;
|
|
// This is the case for when we first start moving and reset the DCM so that yaw matches the gps ground course
|
|
// This is just to get a reasonable estimate faster
|
|
yaw = atan2(_dcm_matrix.b.x, _dcm_matrix.a.x);
|
|
cos_psi_err = cos(ToRad(_gps->ground_course/100.0) - yaw);
|
|
sin_psi_err = sin(ToRad(_gps->ground_course/100.0) - yaw);
|
|
// Rxx = cos psi err, Rxy = - sin psi err, Rxz = 0
|
|
// Ryx = sin psi err, Ryy = cos psi err, Ryz = 0
|
|
// Rzx = Rzy = 0, Rzz = 1
|
|
rot_mat.a.x = cos_psi_err;
|
|
rot_mat.a.y = -sin_psi_err;
|
|
rot_mat.b.x = sin_psi_err;
|
|
rot_mat.b.y = cos_psi_err;
|
|
rot_mat.a.z = 0;
|
|
rot_mat.b.z = 0;
|
|
rot_mat.c.x = 0;
|
|
rot_mat.c.y = 0;
|
|
rot_mat.c.z = 1.0;
|
|
|
|
_dcm_matrix = rot_mat * _dcm_matrix;
|
|
in_motion = true;
|
|
error_course = 0;
|
|
}
|
|
|
|
} else {
|
|
error_course = 0;
|
|
in_motion = false;
|
|
}
|
|
}
|
|
|
|
_error_yaw = _dcm_matrix.c * error_course; // Equation 24, Applys the yaw correction to the XYZ rotation of the aircraft, depeding the position.
|
|
|
|
_omega_P += _error_yaw * _kp_yaw; // Adding yaw correction to proportional correction vector.
|
|
_omega_I += _error_yaw * _ki_yaw; // adding yaw correction to integrator correction vector.
|
|
|
|
// Here we will place a limit on the integrator so that the integrator cannot ever exceed ~30 degrees/second
|
|
integrator_magnitude = _omega_I.length();
|
|
if (integrator_magnitude > radians(30)) {
|
|
_omega_I *= (radians(30) / integrator_magnitude);
|
|
}
|
|
//Serial.print("*");
|
|
}
|
|
|
|
|
|
/**************************************************/
|
|
void
|
|
AP_DCM::euler_angles(void)
|
|
{
|
|
#if (OUTPUTMODE == 2) // Only accelerometer info (debugging purposes)
|
|
roll = atan2(_accel_vector.y, -_accel_vector.z); // atan2(acc_y, acc_z)
|
|
pitch = asin((_accel_vector.x) / (double)9.81); // asin(acc_x)
|
|
yaw = 0;
|
|
#else
|
|
pitch = -asin(_dcm_matrix.c.x);
|
|
roll = atan2(_dcm_matrix.c.y, _dcm_matrix.c.z);
|
|
yaw = atan2(_dcm_matrix.b.x, _dcm_matrix.a.x);
|
|
#endif
|
|
|
|
roll_sensor = degrees(roll) * 100;
|
|
pitch_sensor = degrees(pitch) * 100;
|
|
yaw_sensor = degrees(yaw) * 100;
|
|
|
|
if (yaw_sensor < 0)
|
|
yaw_sensor += 36000;
|
|
}
|
|
|
|
void
|
|
AP_DCM::euler_rp(void)
|
|
{
|
|
pitch = -asin(_dcm_matrix.c.x);
|
|
roll = atan2(_dcm_matrix.c.y, _dcm_matrix.c.z);
|
|
roll_sensor = degrees(roll) * 100;
|
|
pitch_sensor = degrees(pitch) * 100;
|
|
}
|
|
|
|
void
|
|
AP_DCM::euler_yaw(void)
|
|
{
|
|
yaw = atan2(_dcm_matrix.b.x, _dcm_matrix.a.x);
|
|
yaw_sensor = degrees(yaw) * 100;
|
|
|
|
if (yaw_sensor < 0)
|
|
yaw_sensor += 36000;
|
|
}
|
|
|
|
|