ardupilot/libraries/AP_Motors/AP_MotorsHeli_Quad.cpp

283 lines
9.1 KiB
C++

/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdlib.h>
#include <AP_HAL/AP_HAL.h>
#include "AP_MotorsHeli_Quad.h"
extern const AP_HAL::HAL& hal;
const AP_Param::GroupInfo AP_MotorsHeli_Quad::var_info[] = {
AP_NESTEDGROUPINFO(AP_MotorsHeli, 0),
// @Param: RSC_PWM_MIN
// @DisplayName: RSC PWM output miniumum
// @Description: This sets the PWM output on RSC channel for maximum rotor speed
// @Range: 0 2000
// @User: Standard
AP_GROUPINFO("RSC_PWM_MIN", 1, AP_MotorsHeli_Quad, _rotor._pwm_min, 1000),
// @Param: RSC_PWM_MAX
// @DisplayName: RSC PWM output maxiumum
// @Description: This sets the PWM output on RSC channel for miniumum rotor speed
// @Range: 0 2000
// @User: Standard
AP_GROUPINFO("RSC_PWM_MAX", 2, AP_MotorsHeli_Quad, _rotor._pwm_max, 2000),
// @Param: RSC_PWM_REV
// @DisplayName: RSC PWM reversal
// @Description: This controls reversal of the RSC channel output
// @Values: -1:Reversed,1:Normal
// @User: Standard
AP_GROUPINFO("RSC_PWM_REV", 3, AP_MotorsHeli_Quad, _rotor._pwm_rev, 1),
AP_GROUPEND
};
// set update rate to motors - a value in hertz
void AP_MotorsHeli_Quad::set_update_rate( uint16_t speed_hz )
{
// record requested speed
_speed_hz = speed_hz;
// setup fast channels
uint32_t mask = 0;
for (uint8_t i=0; i<AP_MOTORS_HELI_QUAD_NUM_MOTORS; i++) {
mask |= 1U << (AP_MOTORS_MOT_1+i);
}
rc_set_freq(mask, _speed_hz);
}
// enable - starts allowing signals to be sent to motors
void AP_MotorsHeli_Quad::enable()
{
// enable output channels
for (uint8_t i=0; i<AP_MOTORS_HELI_QUAD_NUM_MOTORS; i++) {
rc_enable_ch(AP_MOTORS_MOT_1+i);
}
rc_enable_ch(AP_MOTORS_HELI_QUAD_RSC);
}
// init_outputs
bool AP_MotorsHeli_Quad::init_outputs()
{
if (_flags.initialised_ok) {
return true;
}
for (uint8_t i=0; i<AP_MOTORS_HELI_QUAD_NUM_MOTORS; i++) {
rc_enable_ch(AP_MOTORS_MOT_1+i);
_servo[i] = SRV_Channels::get_channel_for(SRV_Channel::Aux_servo_function_t(SRV_Channel::k_motor1+i), CH_1+i);
if (!_servo[i]) {
return false;
}
}
// set rotor servo range
_rotor.init_servo();
_flags.initialised_ok = true;
return true;
}
// output_test - spin a motor at the pwm value specified
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
void AP_MotorsHeli_Quad::output_test(uint8_t motor_seq, int16_t pwm)
{
// exit immediately if not armed
if (!armed()) {
return;
}
// output to motors and servos
switch (motor_seq) {
case 1 ... AP_MOTORS_HELI_QUAD_NUM_MOTORS:
rc_write(AP_MOTORS_MOT_1 + (motor_seq-1), pwm);
break;
case AP_MOTORS_HELI_QUAD_NUM_MOTORS+1:
// main rotor
rc_write(AP_MOTORS_HELI_QUAD_RSC, pwm);
break;
default:
// do nothing
break;
}
}
// set_desired_rotor_speed
void AP_MotorsHeli_Quad::set_desired_rotor_speed(float desired_speed)
{
_rotor.set_desired_speed(desired_speed);
}
// calculate_armed_scalars
void AP_MotorsHeli_Quad::calculate_armed_scalars()
{
_rotor.set_ramp_time(_rsc_ramp_time);
_rotor.set_runup_time(_rsc_runup_time);
_rotor.set_critical_speed(_rsc_critical/1000.0f);
_rotor.set_idle_output(_rsc_idle_output/1000.0f);
_rotor.set_power_output_range(_rsc_power_low/1000.0f, _rsc_power_high/1000.0f, _rsc_power_high/1000.0f, 0);
}
// calculate_scalars
void AP_MotorsHeli_Quad::calculate_scalars()
{
// range check collective min, max and mid
if( _collective_min >= _collective_max ) {
_collective_min = AP_MOTORS_HELI_COLLECTIVE_MIN;
_collective_max = AP_MOTORS_HELI_COLLECTIVE_MAX;
}
_collective_mid = constrain_int16(_collective_mid, _collective_min, _collective_max);
// calculate collective mid point as a number from 0 to 1000
_collective_mid_pct = ((float)(_collective_mid-_collective_min))/((float)(_collective_max-_collective_min));
// calculate factors based on swash type and servo position
calculate_roll_pitch_collective_factors();
// set mode of main rotor controller and trigger recalculation of scalars
_rotor.set_control_mode(static_cast<RotorControlMode>(_rsc_mode.get()));
calculate_armed_scalars();
}
// calculate_swash_factors - calculate factors based on swash type and servo position
void AP_MotorsHeli_Quad::calculate_roll_pitch_collective_factors()
{
// assume X quad layout, with motors at 45, 135, 225 and 315 degrees
// order FrontRight, RearLeft, FrontLeft, RearLeft
const float angles[AP_MOTORS_HELI_QUAD_NUM_MOTORS] = { 45, 225, 315, 135 };
const bool clockwise[AP_MOTORS_HELI_QUAD_NUM_MOTORS] = { false, false, true, true };
const float cos45 = cosf(radians(45));
for (uint8_t i=0; i<AP_MOTORS_HELI_QUAD_NUM_MOTORS; i++) {
_rollFactor[CH_1+i] = -0.5*sinf(radians(angles[i]))/cos45;
_pitchFactor[CH_1+i] = 0.5*cosf(radians(angles[i]))/cos45;
_yawFactor[CH_1+i] = clockwise[i]?-0.5:0.5;
_collectiveFactor[CH_1+i] = 1;
}
}
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
uint16_t AP_MotorsHeli_Quad::get_motor_mask()
{
uint16_t mask = 0;
for (uint8_t i=0; i<AP_MOTORS_HELI_QUAD_NUM_MOTORS; i++) {
mask |= 1U << (AP_MOTORS_MOT_1+i);
}
mask |= 1U << AP_MOTORS_HELI_QUAD_RSC;
return mask;
}
// update_motor_controls - sends commands to motor controllers
void AP_MotorsHeli_Quad::update_motor_control(RotorControlState state)
{
// Send state update to motors
_rotor.output(state);
if (state == ROTOR_CONTROL_STOP) {
// set engine run enable aux output to not run position to kill engine when disarmed
SRV_Channels::set_output_limit(SRV_Channel::k_engine_run_enable, SRV_Channel::SRV_CHANNEL_LIMIT_MIN);
} else {
// else if armed, set engine run enable output to run position
SRV_Channels::set_output_limit(SRV_Channel::k_engine_run_enable, SRV_Channel::SRV_CHANNEL_LIMIT_MAX);
}
// Check if rotors are run-up
_heliflags.rotor_runup_complete = _rotor.is_runup_complete();
}
//
// move_actuators - moves swash plate to attitude of parameters passed in
// - expected ranges:
// roll : -1 ~ +1
// pitch: -1 ~ +1
// collective: 0 ~ 1
// yaw: -1 ~ +1
//
void AP_MotorsHeli_Quad::move_actuators(float roll_out, float pitch_out, float collective_in, float yaw_out)
{
// initialize limits flag
limit.roll_pitch = false;
limit.yaw = false;
limit.throttle_lower = false;
limit.throttle_upper = false;
// constrain collective input
float collective_out = collective_in;
if (collective_out <= 0.0f) {
collective_out = 0.0f;
limit.throttle_lower = true;
}
if (collective_out >= 1.0f) {
collective_out = 1.0f;
limit.throttle_upper = true;
}
// ensure not below landed/landing collective
if (_heliflags.landing_collective && collective_out < (_land_collective_min/1000.0f)) {
collective_out = _land_collective_min/1000.0f;
limit.throttle_lower = true;
}
float collective_range = (_collective_max - _collective_min) / 1000.0f;
if (_heliflags.inverted_flight) {
collective_out = 1 - collective_out;
}
// feed power estimate into main rotor controller
_rotor.set_motor_load(fabsf(collective_out - _collective_mid_pct));
// scale collective to -1 to 1
collective_out = collective_out*2-1;
// reserve some collective for attitude control
collective_out *= collective_range;
if (collective_out < 0) {
// with negative collective yaw torque is reversed
yaw_out = -yaw_out;
}
float out[AP_MOTORS_HELI_QUAD_NUM_MOTORS] {};
for (uint8_t i=0; i<AP_MOTORS_HELI_QUAD_NUM_MOTORS; i++) {
out[i] =
_rollFactor[CH_1+i] * roll_out +
_pitchFactor[CH_1+i] * pitch_out +
_yawFactor[CH_1+i] * yaw_out +
_collectiveFactor[CH_1+i] * collective_out;
}
// move the servos
for (uint8_t i=0; i<AP_MOTORS_HELI_QUAD_NUM_MOTORS; i++) {
rc_write(AP_MOTORS_MOT_1+i, calc_pwm_output_1to1(out[i], _servo[i]));
}
}
// servo_test - move servos through full range of movement
void AP_MotorsHeli_Quad::servo_test()
{
// not implemented
}