mirror of https://github.com/ArduPilot/ardupilot
300 lines
9.8 KiB
C++
300 lines
9.8 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "AP_WheelEncoder.h"
|
|
#include "WheelEncoder_Quadrature.h"
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
// table of user settable parameters
|
|
const AP_Param::GroupInfo AP_WheelEncoder::var_info[] = {
|
|
// @Param: _TYPE
|
|
// @DisplayName: WheelEncoder type
|
|
// @Description: What type of WheelEncoder is connected
|
|
// @Values: 0:None,1:Quadrature
|
|
// @User: Standard
|
|
AP_GROUPINFO_FLAGS("_TYPE", 0, AP_WheelEncoder, _type[0], 0, AP_PARAM_FLAG_ENABLE),
|
|
|
|
// @Param: _CPR
|
|
// @DisplayName: WheelEncoder counts per revolution
|
|
// @Description: WheelEncoder counts per full revolution of the wheel
|
|
// @Increment: 1
|
|
// @User: Standard
|
|
AP_GROUPINFO("_CPR", 1, AP_WheelEncoder, _counts_per_revolution[0], WHEELENCODER_CPR_DEFAULT),
|
|
|
|
// @Param: _RADIUS
|
|
// @DisplayName: Wheel radius in meters
|
|
// @Description: Wheel radius in meters
|
|
// @Increment: 0.001
|
|
// @User: Standard
|
|
AP_GROUPINFO("_RADIUS", 2, AP_WheelEncoder, _wheel_radius[0], WHEELENCODER_RADIUS_DEFAULT),
|
|
|
|
// @Param: _POS_X
|
|
// @DisplayName: Wheel's X position offset
|
|
// @Description: X position of the center of the wheel in body frame. Positive X is forward of the origin.
|
|
// @Units: m
|
|
// @Increment: 0.01
|
|
// @User: Advanced
|
|
|
|
// @Param: _POS_Y
|
|
// @DisplayName: Wheel's Y position offset
|
|
// @Description: Y position of the center of the wheel in body frame. Positive Y is to the right of the origin.
|
|
// @Units: m
|
|
// @Increment: 0.01
|
|
// @User: Advanced
|
|
|
|
// @Param: _POS_Z
|
|
// @DisplayName: Wheel's Z position offset
|
|
// @Description: Z position of the center of the wheel in body frame. Positive Z is down from the origin.
|
|
// @Units: m
|
|
// @Increment: 0.01
|
|
// @User: Advanced
|
|
AP_GROUPINFO("_POS", 3, AP_WheelEncoder, _pos_offset[0], 0.0f),
|
|
|
|
// @Param: _PINA
|
|
// @DisplayName: Input Pin A
|
|
// @Description: Input Pin A
|
|
// @Values: -1:Disabled,50:PixhawkAUX1,51:PixhawkAUX2,52:PixhawkAUX3,53:PixhawkAUX4,54:PixhawkAUX5,55:PixhawkAUX6
|
|
// @User: Standard
|
|
AP_GROUPINFO("_PINA", 4, AP_WheelEncoder, _pina[0], 55),
|
|
|
|
// @Param: _PINB
|
|
// @DisplayName: Input Pin B
|
|
// @Description: Input Pin B
|
|
// @Values: -1:Disabled,50:PixhawkAUX1,51:PixhawkAUX2,52:PixhawkAUX3,53:PixhawkAUX4,54:PixhawkAUX5,55:PixhawkAUX6
|
|
// @User: Standard
|
|
AP_GROUPINFO("_PINB", 5, AP_WheelEncoder, _pinb[0], 54),
|
|
|
|
#if WHEELENCODER_MAX_INSTANCES > 1
|
|
// @Param: 2_TYPE
|
|
// @DisplayName: Second WheelEncoder type
|
|
// @Description: What type of WheelEncoder sensor is connected
|
|
// @Values: 0:None,1:Quadrature
|
|
// @User: Standard
|
|
AP_GROUPINFO("2_TYPE", 6, AP_WheelEncoder, _type[1], 0),
|
|
|
|
// @Param: 2_CPR
|
|
// @DisplayName: WheelEncoder 2 counts per revolution
|
|
// @Description: WheelEncoder 2 counts per full revolution of the wheel
|
|
// @Increment: 1
|
|
// @User: Standard
|
|
AP_GROUPINFO("2_CPR", 7, AP_WheelEncoder, _counts_per_revolution[1], WHEELENCODER_CPR_DEFAULT),
|
|
|
|
// @Param: 2_RADIUS
|
|
// @DisplayName: Wheel2's radius in meters
|
|
// @Description: Wheel2's radius in meters
|
|
// @Increment: 0.001
|
|
// @User: Standard
|
|
AP_GROUPINFO("2_RADIUS", 8, AP_WheelEncoder, _wheel_radius[1], WHEELENCODER_RADIUS_DEFAULT),
|
|
|
|
// @Param: 2_POS_X
|
|
// @DisplayName: Wheel2's X position offset
|
|
// @Description: X position of the center of the second wheel in body frame. Positive X is forward of the origin.
|
|
// @Units: m
|
|
// @Increment: 0.01
|
|
// @User: Advanced
|
|
|
|
// @Param: 2_POS_Y
|
|
// @DisplayName: Wheel2's Y position offset
|
|
// @Description: Y position of the center of the second wheel in body frame. Positive Y is to the right of the origin.
|
|
// @Units: m
|
|
// @Increment: 0.01
|
|
// @User: Advanced
|
|
|
|
// @Param: 2_POS_Z
|
|
// @DisplayName: Wheel2's Z position offset
|
|
// @Description: Z position of the center of the second wheel in body frame. Positive Z is down from the origin.
|
|
// @Units: m
|
|
// @Increment: 0.01
|
|
// @User: Advanced
|
|
AP_GROUPINFO("2_POS", 9, AP_WheelEncoder, _pos_offset[1], 0.0f),
|
|
|
|
// @Param: 2_PINA
|
|
// @DisplayName: Second Encoder Input Pin A
|
|
// @Description: Second Encoder Input Pin A
|
|
// @Values: -1:Disabled,50:PixhawkAUX1,51:PixhawkAUX2,52:PixhawkAUX3,53:PixhawkAUX4,54:PixhawkAUX5,55:PixhawkAUX6
|
|
// @User: Standard
|
|
AP_GROUPINFO("2_PINA", 10, AP_WheelEncoder, _pina[1], 53),
|
|
|
|
// @Param: 2_PINB
|
|
// @DisplayName: Second Encoder Input Pin B
|
|
// @Description: Second Encoder Input Pin B
|
|
// @Values: -1:Disabled,50:PixhawkAUX1,51:PixhawkAUX2,52:PixhawkAUX3,53:PixhawkAUX4,54:PixhawkAUX5,55:PixhawkAUX6
|
|
// @User: Standard
|
|
AP_GROUPINFO("2_PINB", 11, AP_WheelEncoder, _pinb[1], 52),
|
|
#endif
|
|
|
|
AP_GROUPEND
|
|
};
|
|
|
|
AP_WheelEncoder::AP_WheelEncoder(void) :
|
|
num_instances(0)
|
|
{
|
|
AP_Param::setup_object_defaults(this, var_info);
|
|
|
|
// init state and drivers
|
|
memset(state, 0, sizeof(state));
|
|
memset(drivers, 0, sizeof(drivers));
|
|
}
|
|
|
|
// initialise the AP_WheelEncoder class.
|
|
void AP_WheelEncoder::init(void)
|
|
{
|
|
if (num_instances != 0) {
|
|
// init called a 2nd time?
|
|
return;
|
|
}
|
|
for (uint8_t i=0; i<WHEELENCODER_MAX_INSTANCES; i++) {
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
|
|
uint8_t type = _type[num_instances];
|
|
uint8_t instance = num_instances;
|
|
|
|
if (type == WheelEncoder_TYPE_QUADRATURE) {
|
|
state[instance].instance = instance;
|
|
drivers[instance] = new AP_WheelEncoder_Quadrature(*this, instance, state[instance]);
|
|
}
|
|
#endif
|
|
|
|
if (drivers[i] != nullptr) {
|
|
// we loaded a driver for this instance, so it must be
|
|
// present (although it may not be healthy)
|
|
num_instances = i+1;
|
|
}
|
|
}
|
|
}
|
|
|
|
// update WheelEncoder state for all instances. This should be called by main loop
|
|
void AP_WheelEncoder::update(void)
|
|
{
|
|
for (uint8_t i=0; i<num_instances; i++) {
|
|
if (drivers[i] != nullptr && _type[i] != WheelEncoder_TYPE_NONE) {
|
|
drivers[i]->update();
|
|
}
|
|
}
|
|
}
|
|
|
|
// check if an instance is healthy
|
|
bool AP_WheelEncoder::healthy(uint8_t instance) const
|
|
{
|
|
if (instance >= num_instances) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// check if an instance is activated
|
|
bool AP_WheelEncoder::enabled(uint8_t instance) const
|
|
{
|
|
if (instance >= num_instances) {
|
|
return false;
|
|
}
|
|
// if no sensor type is selected, the sensor is not activated.
|
|
if (_type[instance] == WheelEncoder_TYPE_NONE) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// get the counts per revolution of the encoder
|
|
uint16_t AP_WheelEncoder::get_counts_per_revolution(uint8_t instance) const
|
|
{
|
|
// for invalid instances return zero vector
|
|
if (instance >= WHEELENCODER_MAX_INSTANCES) {
|
|
return 0;
|
|
}
|
|
return (uint16_t)_counts_per_revolution[instance];
|
|
}
|
|
|
|
// get the wheel radius in meters
|
|
float AP_WheelEncoder::get_wheel_radius(uint8_t instance) const
|
|
{
|
|
// for invalid instances return zero vector
|
|
if (instance >= WHEELENCODER_MAX_INSTANCES) {
|
|
return 0.0f;
|
|
}
|
|
return _wheel_radius[instance];
|
|
}
|
|
|
|
// get the total distance travelled in meters
|
|
Vector3f AP_WheelEncoder::get_position(uint8_t instance) const
|
|
{
|
|
// for invalid instances return zero vector
|
|
if (instance >= WHEELENCODER_MAX_INSTANCES) {
|
|
return Vector3f();
|
|
}
|
|
return _pos_offset[instance];
|
|
}
|
|
|
|
// get total delta angle (in radians) measured by the wheel encoder
|
|
float AP_WheelEncoder::get_delta_angle(uint8_t instance) const
|
|
{
|
|
// for invalid instances return zero
|
|
if (instance >= WHEELENCODER_MAX_INSTANCES) {
|
|
return 0.0f;
|
|
}
|
|
// protect against divide by zero
|
|
if (_counts_per_revolution[instance] == 0) {
|
|
return 0.0f;
|
|
}
|
|
return M_2PI * state[instance].distance_count / _counts_per_revolution[instance];
|
|
}
|
|
|
|
// get the total distance traveled in meters
|
|
float AP_WheelEncoder::get_distance(uint8_t instance) const
|
|
{
|
|
// for invalid instances return zero
|
|
return get_delta_angle(instance) * _wheel_radius[instance];
|
|
}
|
|
|
|
// get the total number of sensor reading from the encoder
|
|
uint32_t AP_WheelEncoder::get_total_count(uint8_t instance) const
|
|
{
|
|
// for invalid instances return zero
|
|
if (instance >= WHEELENCODER_MAX_INSTANCES) {
|
|
return 0;
|
|
}
|
|
return state[instance].total_count;
|
|
}
|
|
|
|
// get the total distance traveled in meters
|
|
uint32_t AP_WheelEncoder::get_error_count(uint8_t instance) const
|
|
{
|
|
// for invalid instances return zero
|
|
if (instance >= WHEELENCODER_MAX_INSTANCES) {
|
|
return 0;
|
|
}
|
|
return state[instance].error_count;
|
|
}
|
|
|
|
// get the signal quality for a sensor
|
|
float AP_WheelEncoder::get_signal_quality(uint8_t instance) const
|
|
{
|
|
// protect against divide by zero
|
|
if (state[instance].total_count == 0) {
|
|
return 0.0f;
|
|
}
|
|
return constrain_float((1.0f - ((float)state[instance].error_count / (float)state[instance].total_count)) * 100.0f, 0.0f, 100.0f);
|
|
}
|
|
|
|
// get the system time (in milliseconds) of the last update
|
|
uint32_t AP_WheelEncoder::get_last_reading_ms(uint8_t instance) const
|
|
{
|
|
// for invalid instances return zero
|
|
if (instance >= WHEELENCODER_MAX_INSTANCES) {
|
|
return 0;
|
|
}
|
|
return state[instance].last_reading_ms;
|
|
}
|