ardupilot/libraries/AP_HAL_F4Light/AnalogSource.cpp

206 lines
5.1 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
(c) 2017 night_ghost@ykoctpa.ru
based on: Flymaple port by Mike McCauley
*/
#pragma GCC optimize ("O2")
#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_F4LIGHT
#include "AP_HAL_F4Light.h"
#include "AP_HAL_F4Light_Namespace.h"
#include "AnalogIn.h"
#include <adc.h>
#include <boards.h>
#include <gpio_hal.h>
#include "GPIO.h"
#include <stm32f4xx.h>
#include "Scheduler.h"
#pragma GCC optimize ("O2")
extern const AP_HAL::HAL& hal;
using namespace F4Light;
AnalogSource::AnalogSource(uint8_t pin) :
_sum_count(0),
_sum(0),
_latest(0),
_last_average(0),
_pin(ANALOG_INPUT_NONE),
_stop_pin(ANALOG_INPUT_NONE),
_settle_time_ms(0),
_read_start_time_ms(0),
_init_done(false)
{
if(pin != ANALOG_INPUT_NONE) {
set_pin(pin);
}
}
/*
return voltage from 0.0 to 3.3V, scaled to Vcc
*/
float AnalogSource::voltage_average(void)
{
return voltage_average_ratiometric();
}
float AnalogSource::voltage_latest(void)
{
return read_latest() * (3.3f / 4096.0f);
}
/*
return voltage from 0.0 to 3.3V, assuming a ratiometric sensor. This
means the result is really a pseudo-voltage, that assumes the supply
voltage is exactly 3.3V.
*/
float AnalogSource::voltage_average_ratiometric(void)
{
float v = read_average();
return v * (3.3f / 4096.0f);
}
void AnalogSource::set_pin(uint8_t pin) {
if (pin != _pin) {
noInterrupts();
_sum = 0;
_sum_count = 0;
_last_average = 0;
_latest = 0;
_pin = pin;
interrupts();
// ensure the pin is marked as an INPUT pin
if (pin != ANALOG_INPUT_NONE && pin != ANALOG_INPUT_F4Light_VCC && pin < BOARD_NR_GPIO_PINS) {
GPIO::_pinMode(pin, INPUT_ANALOG);
}
if (pin == ANALOG_INPUT_F4Light_VCC || (pin != ANALOG_INPUT_NONE && pin < BOARD_NR_GPIO_PINS)) {
const adc_dev *dev = _find_device();
if(dev) {
adc_init(dev);
adc_enable(dev);
}
}
_init_done=true;
}
}
/* read_average is called from the normal thread (not an interrupt). */
float AnalogSource::_read_average()
{
if (_sum_count == 0) {
// avoid blocking waiting for new samples
return _last_average;
}
/* Read and clear in a critical section */
EnterCriticalSection;
_last_average = _sum / _sum_count;
LeaveCriticalSection;
return _last_average;
}
void AnalogSource::setup_read() {
if (_stop_pin != ANALOG_INPUT_NONE && _stop_pin < BOARD_NR_GPIO_PINS) {
const stm32_pin_info &p = PIN_MAP[_stop_pin];
gpio_set_mode( p.gpio_device, p.gpio_bit, GPIO_OUTPUT_PP);
gpio_write_bit(p.gpio_device, p.gpio_bit, 1);
}
if (_settle_time_ms != 0) {
_read_start_time_ms = AP_HAL::millis();
}
const adc_dev *dev = _find_device();
if (_pin == ANALOG_INPUT_F4Light_VCC){
adc_set_reg_seqlen(dev, 1);
/* Enable Vrefint on Channel17 */
adc_channel_config(dev, ADC_Channel_17, 1, ADC_SampleTime_84Cycles);
adc_vref_enable();
/* Wait until ADC + Temp sensor start */
Scheduler::_delay_microseconds(10);
} else if (_pin == ANALOG_INPUT_NONE) {
// nothing to do
} else if(dev != NULL && _pin < BOARD_NR_GPIO_PINS) {
adc_set_reg_seqlen(dev, 1);
uint8_t channel = PIN_MAP[_pin].adc_channel;
adc_channel_config(dev, channel, 1, ADC_SampleTime_84Cycles);
adc_enable(dev);
}
}
void AnalogSource::stop_read() {
if(_pin == ANALOG_INPUT_F4Light_VCC) {
adc_vref_disable();
}
if (_stop_pin != ANALOG_INPUT_NONE && _stop_pin < BOARD_NR_GPIO_PINS) {
const adc_dev *dev = _find_device();
adc_disable(dev);
const stm32_pin_info &p = PIN_MAP[_stop_pin];
gpio_set_mode( p.gpio_device, p.gpio_bit, GPIO_OUTPUT_PP);
gpio_write_bit(p.gpio_device, p.gpio_bit, 0);
}
}
bool AnalogSource::reading_settled()
{
if (_settle_time_ms != 0 && (AP_HAL::millis() - _read_start_time_ms) < _settle_time_ms) {
return false;
}
return true;
}
/* new_sample is called from another process */
void AnalogSource::new_sample(uint16_t sample) {
_latest = sample;
EnterCriticalSection;
_sum += sample;
//#define MAX_SUM_COUNT 16 // a legacy of the painfull 8-bit past
#define MAX_SUM_COUNT 64
if (_sum_count >= MAX_SUM_COUNT) { // F4Light has a 12 bit ADC, so can only sum 16 in a uint16_t - and a 16*65536 in uint32_t
_sum /= 2;
_sum_count = MAX_SUM_COUNT/2;
} else {
_sum_count++;
}
LeaveCriticalSection;
}
#endif